Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparison of the Performance of Multiple Linear Regression and Multi-Layer Perceptron Neural Network Algorithms in Predicting Drug Sales at Pharmacy XYZ Arifuddin, Danang; Kusrini, Kusrini; Kusnawi, Kusnawi
JURNAL SISFOTEK GLOBAL Vol 15, No 1 (2025): JURNAL SISFOTEK GLOBAL
Publisher : Institut Teknologi dan Bisnis Bina Sarana Global

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38101/sisfotek.v15i1.15822

Abstract

The needs of better drugs management tool especially that can predict specific drugs consumption volume are needed by any healthcare facility including retail pharmacies. Thus, finding better prediction algorithm with suitable variable internally and externally becoming this research objectives. The research compares correlation score and histogram of each predictor variable with target variable and further input the selected variable into MLR and MLPNN algorithm to find recommended algorithm with better MSE and MAPE. The findings indicate that MLPNN with backpropagation method slightly outperforms MLR with ‘h-7’ as single input variable but with unstable predictions with lower MSE of 19588 and MAPE of 22,3%. While MLR's MSE of 22346,129 and MAPE of 25.4% with ‘h-7’ and ‘bm’ as input variable perform stable prediction. Finally, the research find ‘h-7’ is the most significant variable among other variables and both MLR and MLPNN are both need better improvement to perform drugs prediction analysis.
Perbandingan Performansi Algoritma Multiple Linear Regression dan Multi Layer Perceptron Neural Network dalam Memprediksi Penjualan Obat: Comparison of the Performance of Multiple Linear Regression Algorithms and Multi Layer Perceptron Neural Networks in Predicting Drug Sales Arifuddin, Danang; Kusrini, Kusrini; Kusnawi, Kusnawi
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 2 (2025): MALCOM April 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i2.1952

Abstract

Penelitian ini mengevaluasi pemilihan atribut dari variabel internal (jumlah penjualan) dan eksternal (cuaca, harga komoditas, inflasi) menggunakan metode korelasi, serta membandingkan performansi algoritma Multiple Linear Regression (MLR) dan Multi-Layer Perceptron Neural Network dengan backpropagation (MLPNN-b) dalam memprediksi penjualan obat analgesik di “Apotek XYZ”. Metrik evaluasi Mean Squared Error (MSE) dan Mean Absolute Percentage Error (MAPE) digunakan untuk mengukur akurasi prediksi. Hasil menunjukkan bahwa atribut internal "h-7" memiliki korelasi tertinggi (0,35) terhadap penjualan harian, sementara variabel eksternal seperti suhu harian, harga bawang merah, dan suku bunga juga memberikan kontribusi. Algoritma MLPNN-b dengan parameter tertentu mencapai MAPE 22,3% dan MSE 19.588 pada atribut tunggal, sedangkan MLR memiliki kinerja lebih merata pada atribut kombinasi dengan MAPE 25,6% dan MSE 22.768. Namun, kedua model masih mengalami underfitting dengan tingkat kesalahan prediksi yang cukup tinggi. Penelitian ini menyimpulkan bahwa meskipun MLPNN lebih unggul dalam menangkap hubungan non-linear dibandingkan MLR, akurasi prediksi masih belum optimal. Oleh karena itu, eksplorasi model hybrid serta integrasi lebih banyak variabel eksternal direkomendasikan untuk meningkatkan prediksi penjualan dan mendukung sistem manajemen stok farmasi yang lebih akurat.