Oleisan, Kirey
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Energy Consumption Forecasting with a Multi-Model Deep Learning Approach Fajri, Haidar Ahmad; Oleisan, Kirey
Indonesian Journal of Mathematics and Applications Vol. 3 No. 1 (2025): Indonesian Journal of Mathematics and Applications (IJMA)
Publisher : Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.ijma.2025.003.01.5

Abstract

 High energy consumption highlights the need for accurate primary energy forecasts to be critical for policy development, resource optimization and sustainable growth. Indonesia, the fourth largest energy-consuming country in Asia-Pacific, will face challenges in managing energy consumption for economic advancement if it does not conduct proper forecasts with large and limited data. Deep learning models, such as Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (Bi-LSTM), and Transformer, excel at extracting insights and modelling temporal dependencies with minimal error, making them ideal for energy forecasting. The hybrid CNN-Bi-LSTM-Transformer model leverages complementary strengths: CNN captures initial patterns, Bi-LSTM manages temporal dependencies, and Transformer enhance global relationships. This model outperforms others model, including Linear Regression, CNN, Bi-LSTM, LSTM, CNN-LSTM, CNN-Bi-LSTM, CNN-Transformer, LSTM-Transformer, Bi-LSTM-Transformer, and hybrid CNN-LSTM-Transformer. It achieves a Mean Squared Error (MSE) of $\num{6.0006e-4}$ on train data, $\num{3.4485e-4}$ on test data and computation time of 8.20 minutes from 25 iterations, with 128 units of CNN layer, 150 units of LSTM layer, and four heads of attention in Transformer. The model also reports a Mean Absolute Error (MAE) of $\num{1.4000e-4}$ for training and $\num{1.5000e-4}$ test data and a Mean Absolute Percentage Error (MAPE) of $1.56$\% for train data and $1.75$\% for test data. This model also effectively tracks energy consumption trends with minimal fluctuations, accurately mirroring the original data and avoiding irregular variations, ensuring reliable future predictions in the long- and short-term.
Enhancing Energy Consumption Forecasting with a Multi-Model Deep Learning Approach Fajri, Haidar Ahmad; Oleisan, Kirey
Indonesian Journal of Mathematics and Applications Vol. 3 No. 1 (2025): Indonesian Journal of Mathematics and Applications
Publisher : Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.ijma.2025.003.01.5

Abstract

 High energy consumption highlights the need for accurate primary energy forecasts to be critical for policy development, resource optimization and sustainable growth. Indonesia, the fourth largest energy-consuming country in Asia-Pacific, will face challenges in managing energy consumption for economic advancement if it does not conduct proper forecasts with large and limited data. Deep learning models, such as Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (Bi-LSTM), and Transformer, excel at extracting insights and modelling temporal dependencies with minimal error, making them ideal for energy forecasting. The hybrid CNN-Bi-LSTM-Transformer model leverages complementary strengths: CNN captures initial patterns, Bi-LSTM manages temporal dependencies, and Transformer enhance global relationships. This model outperforms others model, including Linear Regression, CNN, Bi-LSTM, LSTM, CNN-LSTM, CNN-Bi-LSTM, CNN-Transformer, LSTM-Transformer, Bi-LSTM-Transformer, and hybrid CNN-LSTM-Transformer. It achieves a Mean Squared Error (MSE) of $\num{6.0006e-4}$ on train data, $\num{3.4485e-4}$ on test data and computation time of 8.20 minutes from 25 iterations, with 128 units of CNN layer, 150 units of LSTM layer, and four heads of attention in Transformer. The model also reports a Mean Absolute Error (MAE) of $\num{1.4000e-4}$ for training and $\num{1.5000e-4}$ test data and a Mean Absolute Percentage Error (MAPE) of $1.56$\% for train data and $1.75$\% for test data. This model also effectively tracks energy consumption trends with minimal fluctuations, accurately mirroring the original data and avoiding irregular variations, ensuring reliable future predictions in the long- and short-term.