Andrian, Gion
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Clustering Data Meteorologi Wilayah Indonesia Timur Menggunakan Metode K-Means Andrian, Gion; Teny Handhayani; Desi Arisandi
Computatio : Journal of Computer Science and Information Systems Vol. 8 No. 2 (2024): Computatio: Journal of Computer Science and Information Systems
Publisher : Faculty of Information Technology, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/computatio.v8i2.27127

Abstract

Peran meteorologi dalam memahami pola iklim dan dampak perubahan iklim global menjadi fokus untuk mendeteksi dini perubahan iklim, terutama dampak seriusnya pada kehidupan manusia dan sektor ekonomi di kota-kota seperti Jakarta, Semarang, dan Surabaya. Studi ini difokuskan pada wilayah Indonesia timur, termasuk Papua, Maluku, dan Nusa Tenggara, dengan tujuan mengidentifikasi pola perubahan iklim menggunakan metode clustering, khususnya K-Means. Toleransi missing value sebesar 40% memiliki pengaruh besar dengan silhouette score mencapai 0.509. Penggunaan Z-Score dan penghapusan variabel arah angin maksimum juga terbukti efektif. Hasil analisis dua cluster membentuk kelompok berbeda, terutama Cluster 0 yang hanya memiliki satu kota. Perbedaan signifikan terlihat pada suhu, kelembaban, curah hujan, lama penyinaran matahari, dan kecepatan angin antar cluster, menggambarkan pola iklim yang konsisten namun keragaman kondisi meteorologi di wilayah tersebut
CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS Andrian, Gion; Arisandi, Desi; Handhayani, Teny
INTI Nusa Mandiri Vol. 18 No. 2 (2024): INTI Periode Februari 2024
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/inti.v18i2.5039

Abstract

Climate change is a global issue that affect human life and the environment. Signs of climate change can be observed from long-term meteorological data. This research uses clustering techniques with the K-Means and Fuzzy C-Means methods to group cities in the Eastern Indonesia region based on numerical daily time series meteorological data from 1 January 2010 to 31 August 2023. The variables are minimum temperature, maximum temperature, temperature average, humidity, rainfall, duration of sunlight, maximum wind speed, and average wind speed. The dataset was collected from 28 meteorological stations. The K-Means and Fuzzy C-Means methods obtained the same results, namely the highest silhouette value of 0.218 with the number of clusters k = 2. In general, the annual trend shows an increase in temperature and a decrease in wind speed which are signs of climate change. This research is an early study of climate change in East Indonesia. The results of this research are expected to contribute to the study of climate change in Indonesia.