Asti Ralita Sari
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Bayes Estimator for Dagum Distribution Parameters Using Non-Informative Prior Rules with K-Loss Function and Entropy Loss Function Asti Ralita Sari; Sirait, Haposan
International Journal of Mathematics, Statistics, and Computing Vol. 1 No. 4 (2023): International Journal of Mathematics, Statistics, and Computing
Publisher : Communication In Research And Publications

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijmsc.v1i4.59

Abstract

The parameter estimator discussed is the p parameter estimator of the Dagum distribution with the K-loss function and the entropy loss function using the Bayes method. To get the Bayes estimator from the scale parameter of the Dagum distribution, the Jeffrey non-informative prior distribution is used based on the maximum likelihood function and the loss function for the K-loss function and the entropy loss function to obtain an efficient estimator. Determination of the best estimator is done by comparing the variance values generated from each estimator. An estimator that uses the entropy loss function is the best method for estimating the parameters of the Dagum distribution of the data population with efficient conditions met.