Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : UNP Journal of Statistics and Data Science

Forecasting Analysis of Total Coconut Production in Padang Pariaman Using the Double Exponential Smoothing Holt Della Amelia; Zilrahmi; Fitri Mudia Sari
UNP Journal of Statistics and Data Science Vol. 3 No. 2 (2025): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol3-iss2/367

Abstract

Kelapa merupakan buah khas daerah tropis yang memiliki banyak manfaat. Kelapa memiliki arti penting yang strategis bagi Indonesia. Sumatera Barat merupakan salah satu provinsi penghasil kelapa di Indonesia dengan total produksi sebesar 88 ribu ton pada tahun 2023. Dimana Kabupaten Padang Pariaman merupakan kabupaten penghasil kelapa terbesar di Provinsi Sumatera Barat dengan total produksi sebesar 38.794 ton pada tahun 2022. Kelapa merupakan salah satu komoditas utama dan sumber perekonomian di Kabupaten Padang Pariaman. Melihat pentingnya peranan kelapa di Kabupaten Padang Pariaman, maka perlu dilakukan peramalan produksi kelapa untuk mengetahui kondisi hasil perkebunan tersebut. Double Exponential Smoothing merupakan metode yang sesuai digunakan dalam peramalan jumlah produksi kelapa di Kabupaten Padang Pariaman. Hal ini dikarenakan metode ini sesuai dengan data yang memiliki pola trend. Hasil peramalan menunjukkan bahwa produksi kelapa pada tahun 2024 sampai dengan tahun 2028 adalah sebesar 39.506,16 ton, 39.943,43 ton, 40.380,7 ton, 40.817,97 ton, dan 41.255,24 ton. Dimana hasil tersebut menunjukkan bahwa produksi kelapa mengalami peningkatan setiap tahunnya sekitar 1% dengan nilai MAPE sebesar 16,19% yang menunjukkan bahwa hasil peramalan tersebut termasuk dalam kriteria akurat.
Modeling Infant Mortality in West Pasaman Regency With Negative Binomial Regression to Overcome Overdispersion Vinna Sulvia; Fitri Mudia Sari; Dina Fitria
UNP Journal of Statistics and Data Science Vol. 3 No. 4 (2025): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol3-iss4/424

Abstract

Infant mortality serves as a vital indicator of public health and an essential benchmark of development progress. Although the general trend shows a decline, several sub-districts in West Pasaman Regency continue to report relatively high infant mortality rates, raising concerns about the effectiveness of current health services. This study seeks to examine the determinants of infant mortality using count data regression models. The data were obtained from the publication West Pasaman Regency in Figures 2025 by Statistics Indonesia (BPS), consisting of one response variable, the number of infant deaths, and five independent variables: the percentage of Low Birth Weight (LBW), the proportion of deliveries assisted by medical personnel, the proportion of pregnant women enrolled in the K4 program, the number of health workers, and the number of health facilities. The initial analysis employed a Poisson regression model, which assumes equidispersion, but the results revealed evidence of overdispersion. To address this issue, negative binomial regression was adopted as an alternative approach. Model evaluation using the Akaike Information Criterion (AIC) and the Likelihood Ratio Test confirmed that the negative binomial regression provided a better fit than Poisson regression. The results indicate that the percentage of LBW and the number of health facilities significantly influence infant mortality. Low birth weight (LBW) had a positive association with infant mortality, consistent with theory, while the positive effect of health facilities differed from expectations, possibly due to issues of quality, distribution, or reverse causality. 
Application of K-Means Clustering for Grouping Plantation Production in West Pasaman Regency in 2024 Dini Andita Putri; Fitri Mudia Sari; Chairini Wirdiastuti
UNP Journal of Statistics and Data Science Vol. 3 No. 4 (2025): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol3-iss4/426

Abstract

The plantation sector plays a strategic role in supporting the economy of West Pasaman Regency, with major commodities including oil palm, coconut, rubber, cocoa, and patchouli. However, disparities in production across subdistricts require further analysis to identify regions with similar characteristics. This study applies the K-Means Clustering method, with the optimal number of clusters determined using the Elbow Method. The results show three clusters: the first with relatively balanced production, the second dominated by rubber and cocoa, and the third represented by Kinali District with high dominance of oil palm, coconut, and patchouli. These findings indicate that K-Means Clustering can effectively map regional plantation potentials and provide a useful basis for formulating targeted development strategies to optimize resource allocation and support sustainable agricultural planning in West Pasaman Regency.