Muhammad Fathurrahman
Universitas Negeri Semarang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

COMPARATIVE STUDY OF YOLO VERSIONS FOR DETECTING VACANT CAR PARKING SPACES Muhammad Fathurrahman; Anan Nugroho; Ahmad Zein Al Wafi
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 4 (2025): JITK Issue May 2025
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i4.6236

Abstract

The increasing vehicle density in urban areas has made parking space availability a significant challenge. With technological advancements, efficient smart parking systems based on object detection have become essential. This study evaluates the performance of YOLO versions 3 to 11 in detecting vacant parking spaces in urban environments, focusing on real-time processing, high accuracy with limited datasets, and adaptability to varying conditions. Using 4,215 annotated images and two test videos, YOLOv7 achieved the highest overall accuracy of 99.57% with an average FPS of 30.79, making it the most effective model for smart parking applications. YOLOv8 and YOLOv11 followed closely, with accuracies of  98.51% and 98.72%, respectively, and average FPS rates of 32.31 and 31.99, balancing precision and speed, which are ideal for real-time applications. Meanwhile, YOLOv5 stood out for its exceptional processing speed of 33.92 FPS. These results highlight YOLO's potential to revolutionize smart parking systems by significantly enhancing both detection precision and operational efficiency.