This study examines the feasibility and optimization of hybrid hydro-solar-wind-hydrogen energy systems in Togo, focusing on seasonal variations and energy management. Data on solar radiation, wind speed, and hydropower were obtained from meteorological stations, satellite databases, and the Nangbéto station. The results of this study show that the energy management system at the Nangbéto dam could rely on hydrogen storage and a 2.75 MW fuel cell to balance seasonal fluctuations, while a ±3 MW battery would stabilize power output. During periods of high hydropower production, surplus energy could be converted into hydrogen to ensure a continuous supply during low-flow months. The flow fluctuates seasonally, ranging from 1.5–20 m³/s in dry months to over 120 m³/s in the wet season, affecting hydrogen production (5–25 kg/day). Electrolysis efficiency remains stable (65–85%) due to optimized management. The hydro-solar-wind hybrid system converts up to 20% of hydropower into hydrogen, with peak production in August (~1,700 kg/month). Selected sites over Togo, particularly Blitta and Alédjo, show potential for hydrogen infrastructure, with Blitta yielding the most hydrogen (532.15 kg annually) and Lomé the least (482.72 kg) due to differences in solar irradiance. The study highlights the role of energy storage, hybrid integration, and policy support to enhance Togo’s hydrogen production and long-term energy stability.