Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimal hydropower potential assessment in semi-arid regions El Kasimi, Imane; Hasnaoui, Moulay Driss; Khomsi, Driss; Bouziane, Ahmed; Aboulhassane, Amal
International Journal of Renewable Energy Development Vol 14, No 5 (2025): September 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60831

Abstract

While hydropower is a cornerstone of global renewable energy strategies, its development in semi-arid regions remains insufficiently explored. Limited and highly variable water availability often discourages comprehensive assessments of its potential. In particular, run-of-river hydropower, despite its environmental and economic advantages, remains largely underexplored in these contexts due to its sensitivity to flow variability. This study evaluates the theoretical hydropower potential of run-of-river schemes within the semi-arid Grou watershed, a major tributary of the Bouregreg river in Morocco, with a focus on optimizing energy production under dry hydrological conditions. Hydrological modeling was applied using the Soil and Water Assessment Tool (SWAT), enabling the generation of flow-duration curves across the river network. These curves were then used to develop energy-duration curves, allowing for the identification of multiple optimal design flows. Consequently, instead of relying on a single turbine, the study explores the deployment of modular turbines per plant, each tailored to specific flow regimes, thereby expanding the range of exploitable run-of-river hydropower. Results indicate an untapped hydropower potential of approximately 32.4 MW per meter of head, with outputs of 31.5 MW, 783.3 kW, and 98.9 kW for high, moderate, and low flows, respectively. These findings highlight the feasibility of run-of-river hydropower in semi-arid regions and underscore the importance of adaptive turbine systems in enhancing sustainable energy production, specifically in water-scarce environments such as Morocco.