Kepatuhan terhadap Service Level Agreement (SLA) sangat penting dalam manajemen layanan teknologi informasi untuk menjamin kualitas layanan dan mengatur ekspektasi penyelesaian insiden. Namun, banyak organisasi kesulitan memprediksi apakah tiket insiden akan memenuhi SLA, yang dapat menyebabkan ketidakpuasan pengguna, eskalasi masalah, dan beban kerja tinggi bagi tim IT. Tingginya volume tiket harian membuat identifikasi manual terhadap tiket berisiko tinggi menjadi tidak efektif. Penelitian ini bertujuan mengembangkan model klasifikasi berbasis machine learning untuk memprediksi kepatuhan tiket terhadap SLA. Empat algoritma dievaluasi: XGBoost, Random Forest, Decision Tree, dan Logistic Regression. Tahapan mencakup preprocessing, encoding fitur kategorikal, seleksi fitur berbasis Random Forest, penyeimbangan data menggunakan SMOTE, dan hyperparameter tuning dengan Optuna. Hasil menunjukkan XGBoost memiliki performa terbaik dengan akurasi 99,98%, precision 0,9437, recall 0,9710, dan F1-score 0,9571. Selain akurat dan efisien, model ini unggul secara interpretatif melalui SHAP, yang menjelaskan kontribusi tiap fitur. Kesimpulannya, XGBoost direkomendasikan sebagai model paling andal untuk menjadi alat bantu strategis bagi manajer layanan TI dalam mengidentifikasi insiden yang berisiko tinggi gagal memenuhi SLA.