Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Sentimen Pengguna X terhadap Kebijakan PPN 12% Menggunakan Naive Bayes Panggabean, Alwi Andika; Kartikasari, Diah Putri; Aulia, Rafif Risdi; Tambak, Tiara Ayu Triarta; Nabila, Siti Fadiyah; Furqan, Mhd
Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitektur Komputer) Vol 5 No 1 (2025): Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitekt
Publisher : Pustaka Galeri Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55382/jurnalpustakadata.v5i1.1002

Abstract

Kebijakan kenaikan Pajak Pertambahan Nilai (PPN) dari 11% menjadi 12% yang direncanakan berlaku pada tahun 2025 telah menimbulkan berbagai reaksi publik, terutama di media sosial. Penelitian ini bertujuan untuk menganalisis sentimen pengguna media sosial X (sebelumnya Twitter) terhadap kebijakan tersebut menggunakan metode Naive Bayes yang diimplementasikan dalam bahasa pemrograman R. Data diperoleh dari tweet yang relevan dengan topik PPN 12%, kemudian diproses melalui tahapan pra-pemrosesan dan pelabelan manual. Hasil analisis menunjukkan bahwa sentimen negatif mendominasi dengan proporsi 39%, diikuti sentimen netral 32%, dan sentimen positif 29%. Evaluasi performa model Naive Bayes menunjukkan akurasi sebesar 50%, dengan ketepatan klasifikasi tertinggi pada kategori negatif. Analisis lebih lanjut terhadap istilah kunci dan topik diskusi mengungkapkan bahwa kekhawatiran terhadap beban ekonomi dan dampak terhadap UMKM menjadi sumber utama sentimen negatif, sementara sentimen positif dikaitkan dengan harapan terhadap perbaikan layanan publik dan pembangunan. Penelitian ini memberikan wawasan penting bagi pembuat kebijakan untuk memahami persepsi publik terhadap kebijakan fiskal secara lebih mendalam dan berbasis data.
Hybrid Demand Forecasting and Monte Carlo Simulation for Retail Supply Chain Inventory Optimization Kartikasari, Diah Putri; Tambak, Tiara Ayu Triarta; Ridwanto, Aero Rizal
JITCoS : Journal of Information Technology and Computer System Vol. 1 No. 2 (2025): Volume 1 Number 2, December 2025
Publisher : CV. Multimedia Teknologi Kreatif

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65230/jitcos.v1i2.40

Abstract

Retail inventory optimization must balance service levels against holding, ordering, and stockout costs under uncertain demand and lead time. We develop an integrated framework that couples hybrid demand forecasting with Monte Carlo simulation (MCS) to evaluate continuous‑review policies. Historical daily sales are modeled using statistical baselines (naive and exponential smoothing) and gradient‑boosted trees with quantile objectives to obtain distributional forecasts. Predictive means and residual‑based dispersion calibrate a Negative Binomial demand model; because lead-time is not present in the dataset, we treat it as a scenario parameter in the simulator (baseline mean ~2 days, SD ~1 day) and probe it via sensitivity analyses. Using a representative retail subset, we simulate 90‑day horizons with 300 replications per item across a grid of values. Results reveal a convex cost–service frontier: (15,120) minimizes total cost in the tested grid, while (25,140) achieves the highest fill rate. Sensitivity analyses show costs are most responsive to safety stock and lead‑time variability. The framework links forecast uncertainty to inventory policy selection, offering a reproducible, data‑driven tool for practitioners and a baseline for future multi‑echelon and decision‑focused extensions.