Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analysis of Nutritional Needs In Elementary School-Aged Children In Remote, Underdeveloped, and Border Regions Using Android-Based Artificial Neural Network Method Febriani, Arisa; Apdillah, Dicky
IJISTECH (International Journal of Information System and Technology) Vol 8, No 6 (2025): The April edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i6.385

Abstract

The nutritional needs of elementary school children are very important to support their growth, development, and learning abilities. Good nutrition is essential to support the growth of bones, muscles, and organs. In addition, protein, calcium, and iron intake are very important. Nutrition also affects brain function, including children's concentration and memory. One of the schools where various factors related to children's nutrition can be studied is State Elementary School 134633 Tanjung Balai. It is hoped that the analysis of nutritional needs in school children can provide an overview of food consumption patterns, nutritional status, and the factors that influence them. The system developed using the Artificial Neural Network (ANN) model with the Backpropagation algorithm successfully analyzed the nutritional status of children based on the data provided. By categorizing nutritional status into thin, fat, and normal, the system can provide adequate results for the nutritional analysis needs of Elementary School Children in the 3T Area.
Analysis of Nutritional Needs In Elementary School-Aged Children In Remote, Underdeveloped, and Border Regions Using Android-Based Artificial Neural Network Method Febriani, Arisa; Apdillah, Dicky
IJISTECH (International Journal of Information System and Technology) Vol 8, No 6 (2025): The April edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i6.385

Abstract

The nutritional needs of elementary school children are very important to support their growth, development, and learning abilities. Good nutrition is essential to support the growth of bones, muscles, and organs. In addition, protein, calcium, and iron intake are very important. Nutrition also affects brain function, including children's concentration and memory. One of the schools where various factors related to children's nutrition can be studied is State Elementary School 134633 Tanjung Balai. It is hoped that the analysis of nutritional needs in school children can provide an overview of food consumption patterns, nutritional status, and the factors that influence them. The system developed using the Artificial Neural Network (ANN) model with the Backpropagation algorithm successfully analyzed the nutritional status of children based on the data provided. By categorizing nutritional status into thin, fat, and normal, the system can provide adequate results for the nutritional analysis needs of Elementary School Children in the 3T Area.