Simarmata, Penni Wintasari
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Development of a Student Depression Prediction Model Based on Machine Learning with Algorithm Performance Evaluation Simarmata, Penni Wintasari; Prasetyaningrum, Putri Taqwa
Journal of Information System and Informatics Vol 7 No 2 (2025): June
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v7i2.1087

Abstract

This research explores the implementation of machine learning to predict depression among university students using a dataset of 2.028 responses containing PHQ-9 scores and academic-demographic attributes. The research implements a structured modeling process involving feature selection, normalization, the model’s efficacy was gauged through a suite of evaluate measures, encompassing accuracy, precision, recall, F1-score, The support vector machine (SVM) model’s accuracy improved from 58.8% to 99.5% after hyperparameter tuning. This investigation lends itself to the advancement of a proactive identification framework, which hold potential for incorporation within collegiate mental well-being surveillance infrastructures. Future implementations may consider real-time models and expand data sources through digital counseling systems and behavioral analytics