Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Role of Microorganisms in the Degradation of Pesticides: A Sustainable Approach to Soil Remediation Varghese, Diya Merlin; Rubiyatno; Lie, Michael; Kristanti, Risky Ayu; Ruti, Annisa Andarini; Nadifah, Gina; Hossain, Ferdaus Mohd Altaf; Jannat, Md Abu Hanifa; Chairattanawat, Chayanee; Direstiyani, Lucky Caesar
Tropical Aquatic and Soil Pollution Volume 5 - Issue 1 - 2025
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/tasp.v5i1.625

Abstract

The widespread use of pesticides in agriculture, aquaculture, and public health has led to severe environmental and public health concerns due to their overapplication and persistence in ecosystems. Pesticide residues accumulate in soil, degrade its fertility, pollute groundwater, and harm non-target organisms, including beneficial insects and aquatic life. This persistent contamination poses a significant threat to biodiversity, food safety, and ecosystem resilience. The aim of this review is to examine microbial bioremediation as a sustainable and effective strategy for remediating pesticide-contaminated soils. The paper evaluates the mechanisms by which microorganisms degrade or transform hazardous pesticide compounds into less toxic or non-toxic forms and assesses the advantages and limitations of bioremediation technologies. Notably, bioremediation is recognized for its environmental compatibility, cost-effectiveness, and potential to restore soil health without undermining agricultural productivity. Recent studies highlight promising microbial strains capable of degrading diverse classes of pesticides under varying environmental conditions. However, challenges remain, including the scalability of microbial technologies, the complexity of mixed-contaminant sites, and the influence of abiotic factors on microbial efficacy. Future research should focus on optimizing microbial consortia, integrating genetic and metabolic engineering approaches, and developing field-scale applications tailored to specific agroecosystems. Advancing these areas will be critical for establishing bioremediation as a central pillar in sustainable pesticide management and environmental restoration strategies.
Effect of Substrate-to-Inoculum Ratio and Temperatures During the Start-up of Anaerobic Digestion of Fish Waste Yulisa, Arma; Chairattanawat, Chayanee; Park, Sang Hyeok; Jannat, Md Abu Hanifa; Hwang, Seokhwan
Industrial and Domestic Waste Management Volume 2 - Issue 1 - 2022
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (724.104 KB) | DOI: 10.53623/idwm.v2i1.80

Abstract

The high protein and lipid content of fish waste makes mono-digestion a difficult bioprocess for an anaerobic digestion (AD) system. On the other hand, the massive increase in fish and seafood consumption worldwide has led to an inevitable fish waste mono-AD. Therefore, this study was conducted to investigate the effects of food-to-microorganisms (F/M) ratios and temperatures during the start-up period of fish waste mono-digestion. F/M ratios of 0.5, 1, 2, and 3 on a g-COD/g-VSS basis were operated at 35°C and 45°C, representing mesophilic and hyper-mesophilic conditions, respectively. The increase in F/M ratio improved the maximum methane (CH4) production rate at both temperatures. However, F/M ratio of 0.5 generated the highest CH4 yield in mesophilic and hyper-mesophilic conditions (0.23±0.00 L-CH4/g-CODinput). Further increase in F/M ratio decreased CH4 yield up to 21.74% and 39.13% when the reactors were operated at 35°C and 45°C, respectively. When reactors were supplied with FM ratios of 0.5, 1, and 2, hyper-mesophilic temperature improved methanogenesis by up to 2.61% and shortened the lag phase by 22.88%. Meanwhile, F/M ratio 3 at 45°C decreased cumulative CH4 production by up to 26.57% and prolonged the lag phase by 10.19%. The result of this study is beneficial to managing the input substrate of a batch-AD system that treats fish waste as a sole substrate.