Claim Missing Document
Check
Articles

Found 1 Documents
Search

AMIN-CNN: Enhancing Brain Tumor Segmentation through Modality-Aware Normalization and Deep Learning Depuru, Sivakumar; Kumar, M. Sunil
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 3 (2025): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i3.934

Abstract

Accurate segmentation of reliable brain tumor detection is essential for early diagnosis and treatment, which helps to increase patient survival rates. However, the inherent variability in tumor shape, size, and intensity across different MRI modalities makes automated segmentation a challenging task. Traditional deep learning approaches, such as U-Net and its variants, provide robust results but often struggle with modality-specific inconsistencies and generalization across diverse datasets. This research presented AMIN-CNN, an adaptive multimodal invariant normalization incorporating a novel 3D convolutional neural network to improve brain tumors segmentation across various MRI technologies. Through adaptive normalization, AMIN-CNN covers modality-specific differences more effectively than Basic CNN and U-Net, leading to improved integration of multimodal MRI input data. The model maintains strong learning performance with minimal overfitting beyond epoch 50. Regularization techniques can reduce this. AMIN-CNN stands out with the best Dice Score (about 0.92 WT, 0.87 ET, and 0.89 TC), Precision (0.3), accuracy of 93.2 % and can decrease false positives. The lower Sensitivity in AMIN-CNN results in it finding the smaller but more correct tumor regions, making it more precise. Compared with traditional methods, AMIN-CNN demonstrates a competitive or better segmentation result and maintains computational efficiency. The model has demonstrated strong independence, with a Hausdorff Distance of 20, compared to 100 for other models. According to these test results, AMIN-CNN is the most effective and clinically correct method among the different architectures, mainly due to its high precision and ability to measure tumors with accuracy.