Putri, Desak
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Metode Machine Learning untuk Analisis dan Prediksi Siklus Menstruasi Putri, Desak; Khairunisa, Mutiara; Wijayakusuma, I Gusti Ngurah Lanang
JIEET (Journal of Information Engineering and Educational Technology) Vol. 8 No. 2 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jieet.v8n2.p111-115

Abstract

Penelitian ini membandingkan metode machine learning—Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), dan Decision Tree—untuk analisis dan prediksi siklus menstruasi. Menggunakan data sekunder, model-model ini dievaluasi berdasarkan akurasi, Mean Absolute Percentage Error (MAPE), dan Root Mean Square Error (RMSE). Hasil menunjukkan bahwa LSTM memiliki akurasi tertinggi (91,3%), efektif menangkap pola temporal kompleks pada data menstruasi, sedangkan CNN dan Decision Tree kurang konsisten. Hasil ini mendukung LSTM sebagai model yang disarankan untuk pelacakan siklus menstruasi, yang bermanfaat bagi pemantauan kesehatan reproduksi. Penelitian selanjutnya disarankan menambah variabel lain, seperti riwayat kesehatan hormonal dan gaya hidup, untuk meningkatkan akurasi prediksi serta memperhatikan privasi data pada aplikasi pelacakan menstruasi.