Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analyzing the Formation of Nanobubbles and its Effect on the Stability of Dissolved Oxygen in Water Fitriani, Mita; Nugroho, Fairuz Gianirfan; Rochman, Nurul Taufiqu; Ansari, Abu Saad
Journal of Advanced Technology and Multidiscipline Vol. 4 No. 1 (2025): Journal of Advanced Technology and Multidiscipline
Publisher : Faculty of Advanced Technology and Multidiscipline Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jatm.v4i1.71660

Abstract

Nanobubbles (NB) have attracted many researchers due to their unique characteristics, one of which is increasing the amount of dissolved oxygen (DO) in liquids, making them a promising technology for various applications, such as water treatment and aquaculture. This study investigates the generation of NBs using a custom-designed cartridge nozzle and evaluates their effectiveness in sustaining elevated DO concentrations. Experiments were carried out under a controlled gas pressure of 400 N/m2 comprising a 30-minute active phase with the generator turned on, followed by a 30-minute passive phase with the generator off, to assess NB formation and stability. The results showed that smaller nanobubbles had higher stability, allowing dissolved oxygen to stay longer in the water. Particle size analysis revealed the production of uniformly distributed NBs averaging approximately 600 nm, which remained structurally stable even after gas input ceased. During the active phase, DO levels increased sharply, peaking at 28.51 mg/L by the 10th minute. Although a gradual decline was observed after pressurization stopped, DO levels remained significantly higher than baseline, indicating the prolonged oxygen retention capability of NBs. This performance is attributed to the slow dissolution kinetics, high zeta potential, and favorable interfacial interactions of the bubbles. Overall, the cartridge nozzle-based method demonstrates strong potential for applications in water treatment, aquaculture, and other processes requiring efficient and sustained oxygen delivery.
Studi Morfologi dan Mineralogi Pasir Besi Sungai: Dampak Waktu Milling Fitriani, Mita; Ramlan, Ramlan; Setiawan, Jan; Gunanto, Yohanes Edi
Jurnal Penelitian Sains Vol 27, No 1 (2025)
Publisher : Faculty of Mathtmatics and Natural Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56064/jps.v27i1.1100

Abstract

Pasir tersebar luas di seluruh Indonesia. Pasir mengandung banyak mineral seperti Fe, Si, Ca, dan sebagainya dengan persentase yang bergantung pada lokasi pasir ditemukan. Dalam bidang nanoteknologi terdapat salah satu material yang sedang banyak diteliti yaitu nanopartikel magnetik. Penelitian ini menggunakan pasir besi disintesis menggunakan metode milling dan menggunakan instrumen High Energy Milling (HEM) dengan penggunaan variasi waktu milling 4, 5, dan 6 jam. Penelitian ini difokuskan pada identifikasi kandungan mineral, fasa, dan morfologi yang terdapat pada pasir besi. Bahan yang digunakan yaitu pasir Sungai Musi yang berasal dari, Kelurahan Tangga Takat, Seberang Ulu Dua (Seberang Ulu II), Palembang, Sumatra Selatan. Hasil analisis Energy Dispersive X-ray (EDX) dari sampel pasir besi hasil milling dari sungai Musi didominasi oleh unsur Si dan O. Kandungan unsur Fe pada sampel pasir besi Sungai Musi kurang dari 50%. Pada karakterisasi Scanning Electron Microscope (SEM) morfologi permukaan pasir besi memiliki bentuk heterogen karena adanya agregasi, dengan ukuran partikel pada sampel pasir besi waktu milling 4 jam sebesar 1,66-5,64 μm, 5 jam sebesar 1,83-4,98 μm, dan 6 jam sebesar 1,56-4,89 μm. Nilai tersebut membuktikan bahwa waktu milling berpengaruh terhadap ukuran partikel. Analisis X-ray Diffraction (XRD) menggunakan Match! Menunjukan bahwa pasir besi Sungai Musi setelah milling mengandung magnetit (Fe3O4), kuarsa (SiO2), dan titanium dioksida (TiO2). Persentase kandungan mineral berbeda tergantung lama waktu milling, dimana semakin lama milling, material tidak hanya berubah bentuk dan meleleh, tetapi juga menghasilkan titik panas yang memicu eksitasi atom yang dapat memutuskan ikatan, dan menghasilkan produk baru.