Bohovic, Dušan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparison of LSTM and GRU Methods for Predicting Gold Exchange Rate against US Dollar Bohovic, Dušan
International Journal Artificial Intelligent and Informatics Vol 3, No 1 (2025)
Publisher : Research and Social Study Institute (ReSSI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (540.568 KB) | DOI: 10.33292/ijarlit.v3i1.43

Abstract

This study aims to compare the performance of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models in predicting the gold exchange rate against the United States Dollar (USD). Using time series data from Yahoo Finance for the period 2017-2023, we evaluate and compare the two models based on comprehensive evaluation metrics. The results show that the GRU model performs better in several important metrics, especially in terms of Root Mean Square Error (RMSE) on the test data (26.41 compared to 27.54 on LSTM) and higher coefficient of determination (R²) on the test data (0.9004 compared to 0.7825 on LSTM). These findings indicate that the GRU model has better generalization ability for gold to USD exchange rate prediction, although both models show very high accuracy rates above 98% on the test data.