Prasanthi, B. G.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Novel preemptive intelligent artificial intelligence-model for detecting inconsistency during software testing Govinda, Sangeetha; Prasanthi, B. G.; Vincent, Agnes Nalini
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i3.pp1781-1789

Abstract

The contribution of artificial intelligence (AI)-based modelling is highly significant in automating the software testing process; thereby enhancing the cost, resources, and productivity while performing testing. Review of existing AI-models towards software testing showcases yet an open-scope for further improvement as yet the conventional AI-model suffers from various challenges especially in perspective of test case generation. Therefore, the proposed scheme presents a novel preemptive intelligent computational framework that harnesses a unique ensembled AI-model for generating and executing highly precise and optimized test-cases resulting in an outcome of adversary or inconsistencies associated with test cases. The ensembled AI-model uses both unsupervised and supervised learning approaches on publicly available outlier dataset. The benchmarked outcome exhibits supervised learning-based AI-model to offer 21% of reduced error and 1.6% of reduced processing time in contrast to unsupervised scheme while performing software testing.