Ogundele, Mary Oluwafeyisayo
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Development of a web-based application for real-time eye disease classification system using artificial intelligence Okokpujie, Kennedy; Tolulope, Adekoya; Orimogunje, Abidemi; Mommoh, Joshua Sokowonci; Ijeh, Adaora Princess; Ogundele, Mary Oluwafeyisayo
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 2: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i2.pp558-574

Abstract

The incorporation of artificial intelligence (AI) into the field of medicine has created new strategies in enhancing the detection of disease, with a focus on the identification of eye diseases such as glaucoma, diabetic retinopathy, and macular degeneration associated with age, which can lead to blindness if not detected and treated early enough. Driven by the need to combat blindness, which affects approximately 39 million people globally, according to the World Health Organization (WHO). This research offers a web-based, real time approach to classifying eye diseases from fundus images due to user friendliness. Three pre-trained convolutional neural network (CNN) models are adopted, namely ResNet-50, Inception-v3, and MobileNetV3. The models were trained on a dataset of 8000 fundus images subdivided into four classes: cataract, glaucoma, diabetic retinopathy, and normal eyes. The performance of the models was evaluated in 3-way (normal eye and two diseases) and 4-way (normal eye and three diseases). ResNet-50 had higher performances, with 98% and 97% accuracy in the respective classifications, compared to InceptionV3 and MobileNetV3. Consequently, ResNet-50 was used in an online application that made real-time diagnoses. This research findings reveal the potential of CNNs in the healthcare industry, particularly in reducing over-reliance on specialists and increasing access to quality diagnostic technologies. Especially in critical areas such as this with limited healthcare resources, where the technology can create significant gaps in disease detection and control.
Development of classification model for thoracic diseases with chest X-ray images using deep convolutional neural network Okokpujie, Kennedy; Anointing, Tamunowunari-Tasker; Ijeh, Adaora Princess; Okokpujie, Imhade Princess; Ogundele, Mary Oluwafeyisayo; Oguntuyo, Oluwadamilola
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.9300

Abstract

Thoracic disease is a medical condition in the chest wall region. Accurate thoracic disease diagnosis in patients is critical for effective treatment. Atelectasis, mass, pneumonia, and pneumothorax are thoracic diseases that can lead to life-threatening conditions if not detected and treated early enough. When diagnosing these diseases, human expertise can also be susceptible to errors due to fatigue or emotional factors. This research proposes developing a real-time deep learning-based classification model for thoracic diseases. Three deep convolutional neural network (CNN) models - MobileNetV3Large, ResNet-50, and EfficientNetB7 - were evaluated for classifying thoracic diseases from chest X-ray images. The models were tested in 5-class (atelectasis, mass, pneumothorax, pneumonia, and normal), 4-class (atelectasis, pneumothorax, pneumonia, and normal), and 3-class (atelectasis, pneumonia, and normal) modes to assess the impact of high interclass similarity. Retrained MobileNetV3Large achieved the highest classification accuracy: 75.72% next to ResNet-50 (75.2%) and last EfficientNetB7 (73.03%). For the 4-class, EfficientNetB7 (88.08%) led with MobileNetV3Large in the last (87.08%), but MobileNetV3Large led the 3-way with 97.88% with EfficientNetB7 again in the last (96.55%). These results indicate that MobileNetV3 can effectively distinguish and diagnose thoracic diseases from chest X-rays, even with interclass similarity and supports the use of computer-aided detection systems in thoracic disease classification.