Sallibi, Anas D.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Enhanced fault detection in photovoltaic systems using an ensemble machine learning approach Ibrahim, Mohammed Salah; Almulla, Hussein k.; Sallibi, Anas D.; Nafea, Ahmed Adil; Kareem, Aythem Khairi; Alheeti, Khattab M. Ali
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 2: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i2.pp507-517

Abstract

Malfunctioning of photovoltaic (PV) systems is a main issue affecting solar panels and other related components. Detecting such issues early leads to efficient energy production with low maintenance costs and high system performance consistency. This paper proposed an ensemble model (EM) for fault detection (FD) in PV systems. The proposed model utilized advanced machine learning algorithms containing random forest (RF), k-nearest neighbors (KNN), and gradient boosting (GB). Traditional approaches often do not handle the several situations that PV systems can have. Our EM leveraged the power of GB’s algorithm in handling complex data patterns through iterative boosting, KNN’s capability in capturing local data structures, and RF’s strength in handling overfitting and noise through its tree structure randomness. Combining these models enhanced fault detection capabilities, providing excellent accuracy compared to individual models. To evaluate the performance of our EM, different experiments were conducted. The results demonstrated substantial improvements in detection fault, achieving an accuracy rate of 95%. This accuracy rate considered high underscores the model’s capability to handle fault detection of PV systems, posing a consistent solution for instant fault detection and maintenance scheduling.