Hosseini, Soodeh
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine learning methods for energy sector in internet of things Hafezifard, Reyhane; Hosseini, Soodeh
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 14, No 2: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v14.i2.pp538-545

Abstract

This research paper focuses on exploring machine learning studies and conducting a comparative analysis of their advantages, disadvantages, implementation environments, and algorithms. A key aspect of the study involves evaluating the energy efficiency using machine learning algorithms to predict energy consumption. Additionally, a feature selection algorithm is employed to rank the features, with the highest-ranking feature identified as one of the most significant. The experimentation is conducted using the Weka tool, incorporating several machine learning algorithms such as linear regression, k-nearest neighbors, decision stump, radial basis function (RBF) network, and isotonic regression. The RBF algorithm, which relies on RBF, shares similarities with neural network algorithms. Results indicate a minimum error value of 1.546 for cooling load and 1.364 for heating load. The random forest algorithm emerges as the most suitable choice within the context of this study.