Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Kesiapan Kebijakan Tata Ruang Kota Palu dalam Mendukung Agenda SDG 11 (Kota Berkelanjutan) Herman, Sitti Rabiatul Wahdaniyah; Takwim, Supriadi; Putri Abdi, Azizah; Rasdiana; Wahyuningsih, Tri
Jurnal Peweka Tadulako Vol. 4 No. 1 (2025): Jurnal PeWeKa Tadulako
Publisher : Prodi PWK Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/peweka.v4i1.49

Abstract

This study aims to analyze the readiness of spatial planning policies in Palu City in supporting the achievement of Sustainable Development Goal (SDG) 11, which emphasizes the development of inclusive, safe, resilient, and sustainable cities and human settlements. As a disaster-prone area, Palu City has experienced significant spatial pressures, particularly in the aftermath of the 2018 earthquake, tsunami, and liquefaction events. Utilizing a qualitative descriptive approach and secondary data analysis, this study evaluates spatial planning documents such as the Regional Spatial Plan (RTRW), the Detailed Spatial Plan (RDTR), and the Regional Medium-Term Development Plan (RPJMD) of Palu City for the periods 2016–2021 and 2021–2026. The assessment is based on the alignment of these policies with the key indicators of SDG 11, including the provision of adequate housing, green open spaces, sustainable transportation systems, and disaster risk mitigation. The analysis shows that while SDG 11 principles are reflected in planning documents, their implementation remains limited.. Major challenges include the lack of integrated spatial data, weak inter-agency coordination, and limited community participation in the planning process. Therefore, institutional strengthening, improvements in geospatial data quality, and the mainstreaming of sustainability principles across all sectoral policies are urgently needed. This research contributes to the understanding of the nexus between spatial planning and sustainable development in disaster-prone cities and serves as a reference for future policy improvement.
Klasifikasi Tutupan Lahan Perkotaan Menggunakan Citra Satelit Sentinel-2 dan Pendekatan Machine Learning Algoritma Random Forest (Studi Kasus: Kota Palu): Urban Land Cover Classification Using Sentinel-2 Satellite Imagery and the Random Forest Machine Learning Algorithm (Case Study: Palu City) Radhinal, Yan; Putri Abdi, Azizah; Nur Annisa Ahmad, Despry
Jurnal Kolaboratif Sains Vol. 8 No. 8: Agustus 2025
Publisher : Universitas Muhammadiyah Palu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56338/jks.v8i7.8301

Abstract

Data tutupan lahan (land cover) yang akurat dan mutakhir merupakan fondasi penting bagi perencanaan tata ruang, pemantauan lingkungan, dan pengambilan kebijakan pembangunan di wilayah perkotaan. Penelitian ini menyajikan sebuah metode yang efisien untuk mengklasifikasikan tutupan lahan di Kota Palu menggunakan citra satelit Sentinel-2 dan algoritma machine learning Random Forest. Dengan memanfaatkan platform komputasi awan Google Earth Engine (GEE), citra satelit untuk tahun 2024 diproses menjadi sebuah komposit bebas awan. Klasifikasi dilakukan dengan memanfaatkan data spektral dari citra tersebut untuk mengidentifikasi lima kelas tutupan lahan utama. Lima kelas tutupan lahan utama diidentifikasi: (1) Lahan Terbangun, (2) Vegetasi Rapat, (3) Vegetasi Jarang, (4) Badan Air, dan (5) Lahan Terbuka/Pasir. Akurasi model dievaluasi menggunakan metode validasi standar (30% dari total sampel) dan menunjukkan akurasi keseluruhan 95,27% dengan koefisien Kappa 0,819. Hasil penelitian ini berupa peta tutupan lahan digital beresolusi tinggi yang dapat menjadi data dasar krusial bagi pemerintah Kota Palu dalam merumuskan kebijakan tata ruang, memantau perubahan lingkungan, serta mendukung perencanaan mitigasi bencana yang lebih efektif.