Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of System and Computer Engineering

Enhancing Human Activity Recognition with Attention-Based Stacked Sparse Autoencoders Batau, Radus; Sari, Sri Kurniyan; Aziz, Firman; Jeffry, Jeffry
Journal of System and Computer Engineering Vol 6 No 4 (2025): JSCE: October 2025
Publisher : Universitas Pancasakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61628/jsce.v6i4.2148

Abstract

This study presents the development of an intelligent system for the classification of respiratory diseases using lung sound visualizations and deep learning. A hybrid Convolutional Neural Network and Bidirectional Long Short-Term Memory (CNN–BiLSTM) model was designed to classify four conditions: asthma, bronchitis, tuberculosis, and normal (healthy). Lung sound recordings were converted into time-frequency representations (e.g., mel-spectrograms), enabling spatial-temporal feature extraction. The system achieved an overall classification accuracy of 99.5%, with F1-scores above 0.93 for all classes. The confusion matrix revealed minimal misclassifications, primarily between asthma and bronchitis. These results suggest that the proposed model can effectively support real-time, non-invasive respiratory screening, particularly in telemedicine environments. Future work includes clinical validation, integration of patient metadata, and adoption of transformer-based models to further enhance diagnostic performance.