Khaleelahmed, Shaik
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effective crop categorization using wavelet transform based optimized long short-term memory technique Pompapathi, Manasani; Khaleelahmed, Shaik; Jawarneh, Malik; Naved, Mohd; Awasthy, Mohan; Srinivas Kumar, Seepuram; Omarov, Batyrkhan; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.7748

Abstract

Effective crop categorization is important for keeping track of how crops grow and how much they produce in the future. Gathering crop data on categories, regions, and space distribution in a timely and accurate way could give a scientifically sound reason for changes to the way crops are organized. Polarimetric synthetic aperture radar dataset provides sufficient information for accurate crop categorization. It is essential to classify crops in order to successfully. This article presents wavelet transform (WT) based optimizedlong short-term memory (LSTM) deep learning (DL) for effective crop categorization. Image denoising is performed by WT. Denoising algorithms for images attempt to find a middle ground between totally removing all of the image’s noise and preserving essential, signal-free components of the picture in their original state. After denoising of images, crop image classification is achieved by LSTM and support vector machine (SVM) algorithm. LSTM has achieved 99.5% accuracy.
Task scheduling algorithm using grey wolf optimization technique in cloud computing environment Khaleelahmed, Shaik; Selvaraj, Sivakumar; Mohite, Rajendra B.; Bangare, Manoj L.; Bangare, Pushpa M.; Kulkarni, Shriram S.; Ajibade, Samuel-Soma M.; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.7695

Abstract

Scheduling refers to the process of allocating cloud resources to several users according to a schedule that has been established in advance. It is not possible to get acceptable performance in settings that are distributed without proper planning for simultaneous processes. When developing productive schedules in the cloud, it is necessary for work scheduling to take a variety of constraints and goals into consideration.When dealing with activities that have performance optimization limits, resource allocation is a very important aspect to consider. When it comes to cloud computing, the only way to achieve great performance, high profits, high scalability, efficient provisioning, and cost savings is with an exceptional task scheduling system. This article presents a grey wolf optimization (GWO) based framework for efficient task scheduling in cloud computing environment. The proposed algorithm is compared with particle swarm optimization (PSO) and flower pollination algorithm (FPA) and GWO is performing task scheduling in less execution time and cost in comparison with PSO and FPA techniques. Execution time taken by GWO to finish 200 task in 120.2 ms. It is less than the time taken by PSO and FPA algorithm to finish same number of tasks.