Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Penyakit pada Tanaman Berdasarkan Citra Daun Menggunakan Metode Convolutional Neural Network Pangestu, Denis Aji; Aziz, Okta Qomaruddin; Crysdian, Cahyo
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 10 No. 2 (2025): May 2025
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/jiska.2025.10.2.235-248

Abstract

The agricultural sector is a vital part of the economy, providing food, raw materials, and employment opportunities. In Indonesia, this sector faces significant challenges, such as low interest from younger generations and plant disease issues. Plant disease identification typically requires the expertise of experienced professionals, but this process is time-consuming and costly. This research aims to develop a plant disease classification model using a Convolutional Neural Network (CNN) to assist farmers in identifying diseases in rice, corn, tomato, and potato plants based on leaf images. Testing was conducted with data splitting ratios of 70:30, 80:20, and 90:10, using both single-stage and multi-stage classification methods. The best results were achieved with an 80:20 data ratio using single-stage classification, with an average accuracy of 80%, precision of 80%, recall of 81%, and F1-score of 79%. This study demonstrates that the CNN method is effective in plant disease classification, achieving optimal performance at a 80:20 data ratio and in single-stage classification. It is hoped that this research can help farmers quickly and accurately identify and manage plant diseases, as well as encourage innovation in the agricultural sector. The implementation of CNN in plant disease classification shows great potential in enhancing the efficiency and accuracy of disease detection, ultimately supporting the sustainability and development of the agricultural sector.