Efisiensi anggaran merupakan isu krusial dalam pengelolaan keuangan negara yang sering menjadi sorotan publik, khususnya di media sosial seperti Twitter. Opini masyarakat yang tersebar di platform tersebut mencerminkan tingkat kepercayaan terhadap keterbukaan dan akuntabilitas pemerintah. Namun, data opini yang bersifat tidak terstruktur menimbulkan tantangan dalam analisis sentimen publik secara menyeluruh. Penelitian ini bertujuan untuk mengevaluasi opini masyarakat mengenai efisiensi anggaran menggunakan algoritma Naïve Bayes. Sebanyak 1.610 tweet dikumpulkan dan diproses melalui tahap preprocessing yang meliputi pembersihan data, case folding, tokenisasi, normalisasi, penghapusan stopword, dan stemming. Setelah preprocessing, data diberi label secara manual untuk klasifikasi sentimen. Selanjutnya, dilakukan ekstraksi fitur menggunakan metode TF-IDF dan pembagian data menjadi 80% untuk pelatihan dan 20% untuk pengujian model. Hasil analisis menunjukkan bahwa opini publik cenderung negatif dengan distribusi 58,4% negatif, 23,5% netral, dan 18,1% positif. Model klasifikasi menghasilkan akurasi sebesar 73,29%, dengan nilai F1-score tertinggi pada sentimen negatif (0,82) dan terendah pada sentimen netral (0,06), yang mengindikasikan adanya ketidakseimbangan data. Penelitian ini menyimpulkan bahwa algoritma Naïve Bayes cukup efektif dalam mengidentifikasi sentimen negatif, namun memerlukan perbaikan dalam mendeteksi sentimen netral, antara lain melalui teknik penyeimbangan data dan eksplorasi algoritma lain di masa mendatang.