Venkateshappa, Venkateshappa
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Study on neuromorphic computation and its applications Chature, Anjali; Raganna, A.; Venkateshappa, Venkateshappa
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp272-282

Abstract

Neuromorphic computing offers a promising alternative to traditional von Neumann architectures, especially for applications that require efficient processing in edge environments. The challenge lies in optimizing spiking neural networks (SNNs) for these environments to achieve high computational efficiency, particularly in event-driven applications. This paper investigates the integration of advanced simulation tools, such as Simeuro and SuperNeuro, to enhance SNN performance on edge devices. Through comprehensive studies of various SNN models, a novel SNN design with optimized hardware components is proposed, focusing on energy and communication efficiency. The results demonstrate significant improvements in computational efficiency and performance, validating the potential of neuromorphic architectures for executing event-driven scientific applications. The findings suggest that neuromorphic computing can transform the way edge devices handle event-driven tasks, offering a pathway for future innovations in diverse application domains.