El Fayq, Khalid
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing TV program success prediction using machine learning by integrating people meter audience metrics with digital engagement metrics El Fayq, Khalid; Tkatek, Said; Idouglid, Lahcen
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp353-363

Abstract

With the emergence of numerous media services on the internet, television (TV) remains a highly demanded medium in terms of reliability and innovation, despite intense competition that compels us to devise strategies for maintaining audience engagement. A key indicator of a TV channel’s success is its reach, representing the percentage of the target audience that views the broadcasts. To aid TV channel managers, the industry is exploring new methods to predict TV reach with greater accuracy. This paper investigates the potential of advanced machine learning models in predicting TV program success by integrating people meter audience metrics with digital engagement metrics. Our approach combines convolutional neural networks (CNNs) for processing digital engagement data, long short-term memory (LSTM) networks for capturing temporal dependencies, and gaussian processes (GPs) for modeling uncertainties. Our results demonstrate that the best-performing hybrid model achieves a prediction accuracy of 95%. This study contributes to the field by addressing manual scheduling errors, financial losses, and decreased viewership, providing a more comprehensive understanding of audience behavior and enhancing predictive accuracy through the integration of diverse data sources and advanced machine learning techniques.
Enhanced pre-broadcast video codec validation using hybrid CNN-LSTM with attention and autoencoder-based anomaly detection El Fayq, Khalid; Tkatek, Said; Idouglid, Lahcen
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2864-2875

Abstract

This study presents a machine learning-based approach for proactive video codec error detection, ensuring uninterrupted television broadcasting for TV Laayoune, part of Morocco’s SNRT network. Building upon previous approaches, our method introduces autoencoders for improved anomaly detection and integrates data augmentation to enhance model resilience to rare codec configurations. By combining convolutional neural networks (CNNs) and long short-term memory (LSTM) networks with an attention mechanism, the system effectively captures spatial and temporal video features. This architecture emphasizes critical metadata attributes that influence video playback quality. Embedded within the broadcasting pipeline, the model enables real-time error detection and alerts, minimizing manual intervention and reducing transmission disruptions. Experimental results demonstrate a 97% accuracy in detecting codec errors, outperforming traditional machine learning models. This study highlights the transformative role of machine learning in broadcasting, enabling scalable deployment across diverse television networks.