Alfariz, Muhammad Alkam
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

CFO-RetinaNet: Convolutional Feature Optimization for Oil Palm Ripeness Assessment in Precision Agriculture Alfariz, Muhammad Alkam; Santoso, Hadi
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i2.30753

Abstract

Accurate ripeness assessment of oil palm fruit bunches (FFB) is critical for optimizing yield and quality in the palm oil industry, yet manual grading remains subjective and labor-intensive. This study proposes CFO-RetinaNet, an enhanced RetinaNet framework integrating deformable convolutions and hybrid attention mechanisms to optimize multi-scale convolutional features for robust ripeness classification under variable field conditions. Our key contribution is threefold: (1) a novel dataset of 4,728 high-resolution, expert-annotated FFB images spanning five ripeness stages (Immature to Decayed), collected under diverse lighting and occlusion scenarios in Central Kalimantan, Indonesia; (2) a feature optimization pipeline combining adaptive feature fusion and dynamic focal loss to improve discriminative capability for nuanced inter-class distinctions; and (3) a scalable deep learning solution validated through rigorous field testing. The model achieves a mean average precision (mAP) of 83.6% and an F1-score of 98.3%, outperforming YOLOv5 (82.5% mAP) and Faster R-CNN (76.4% mAP), with 18.5% fewer misclassifications than standard RetinaNet. It retains 99% accuracy in low-light conditions and reduces labor costs by automating error-prone grading tasks. By publicly releasing the dataset and framework, this work advances precision agriculture standards, offering a transferable solution for ordinal maturity classification in perennial crops while supporting sustainable palm oil production through optimized harvesting decisions.