Wadu, Benyamin Orison Darling Kana
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Arsitektur ResNet50V2, InceptionV3, dan DenseNet121 dalam Klasifikasi Pengenalan Ekspresi Wajah Mola, Sebastianus Adi Santoso; Wadu, Benyamin Orison Darling Kana; Kenlopo, Asnat Nofri; Tungga, Varra Chandrika Kumara
JURNAL INFORMATIKA DAN KOMPUTER Vol 9, No 2 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiko.v9i2.1584

Abstract

Ekspresi wajah mampu menyampaikan perasaan seseorang, seperti kebahagiaan, kesedihan, atau kemarahan. Meski manusia secara alami mampu mengenali ekspresi wajah, pengklasifikasian ekspresi sering kali menjadi tantangan. Dengan kemajuan teknologi, analisis dan klasifikasi ekspresi wajah kini dapat dilakukan secara otomatis menggunakan pembelajaran mesin, terutama pada metode Convolutional Neural Network (CNN) seperti ResNet50V2, InceptionV3, dan DenseNet121. Penelitian ini bertujuan untuk membandingkan kemampuan dan efisisensi dari tiga model arsitektur CNN yaitu ResNetV50, InceptionV3, dan DenseNet121 dalam klasifikasi pengenalan ekspresi wajah. Penelitian ini menggunakan dataset ekspresi wajah berjumlah 14.248 gambar yang terbagi menjadi lima kelas: bahagia, marah, netral, sedih, dan terkejut. Data dibagi menjadi 80% untuk pelatihan dan 20% untuk validasi. Hasil evaluasi menunjukkan bahwa ResNet50V2 memberikan performa terbaik dengan akurasi 79%, macro average F1-score 0,76, dan weighted average F1-score 0,75. Model ini unggul dalam menangani distribusi data tidak merata, terutama pada kelas dominan seperti Happy dan Neutral. DenseNet121 menempati posisi kedua dengan akurasi 75%, diikuti oleh InceptionV3 dengan akurasi terendah 65%. ResNet50V2 terbukti sebagai model yang paling efektif untuk klasifikasi ekspresi wajah