Claim Missing Document
Check
Articles

Found 1 Documents
Search

Multi-Horizon Short-Term Residential Load Forecasting Using Decomposition-Based Linear Neural Network Henri Tantyoko; Satriawan Rasyid Purnama; Etna Vianita
Advance Sustainable Science Engineering and Technology Vol. 7 No. 3 (2025): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v7i3.2033

Abstract

Short-Term Load Forecasting is crucial for grid stability and real-time energy management, particularly in residential settings where consumption is highly volatile and influenced by behavioral and external factors. Traditional models struggle to capture complex, non-linear patterns. This study proposes a forecasting framework based on the DLinear model, which decomposes time series data into trend and seasonal components using a simple linear neural network architecture. Designed for multi-horizon forecasting, the model predicts electricity demand across several future time points simultaneously. Experimental results show that DLinear performs best at a 24-hour prediction length, achieving the lowest MSE of 41.58 and MAE of 5.11, indicating improved accuracy with longer horizons. These results confirm DLinear’s robustness and efficiency in modeling dynamic residential electricity consumption patterns.