Claim Missing Document
Check
Articles

Found 4 Documents
Search

METODE PENENTUAN TITIK KOORDINAT ZONA POTENSI PENANGKAPAN IKAN PELAGIS BERDASARKAN HASIL DETEKSI TERMAL FRONT SUHU PERMUKAAN LAUT Rossi Hamzah; Teguh Prayogo; Sartono Marpaung
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 13 No. 2 (2016)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.2016.v13.a2364

Abstract

Information points coordinate of potential fishing zones (PFZ) is required by user that to be more effective in conducting fishing operation. The results of thermal front detection using single image edge detection (SIED) as shape contour lines. This research aims to determine points coordinate for potential fishing zone based on detection of thermal fronts sea surface temperatures. To determine point coordinate performed segmentation on detection result according to size fishnet grid. Contour line contained in each grid is a polygon shape. Centroid of each polygon is point coordinate of PFZ. The result of sea surface temperature data processing from Terra/Aqua MODIS and Suomi NPP VIIRS satellite indicates that method of determination the centroid of polygon is very effective in determining the point coordinate of PFZ. Using that method the processing stages of satellite data to be faster, more efficient and practical due to the information of PFZ is already as points coordinate.
METODE DUAL KANAL UNTUK ESTIMASI KEDALAMAN DI PERAIRAN DANGKAL MENGGUNAKAN DATA SPOT 6 STUDI KASUS : TELUK LAMPUNG Muchlisin Arief; Syifa Wismayati Adawiah; Ety Parwati; Sartono Marpaung
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 1 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.2017.v14.a2618

Abstract

Depth data can be used to produce seabed profile, oceanography, biology, and sea level rise. Remote sensing technology can be used to estimate the depth of shallow marine waters characterized by the ability of light to penetrate water bodies. One image that can estimate the depth is SPOT 6 which has three visible canals and one NIR channel with 6 meter spatial resolution. This study used SPOT 6 image on March 22, 2015. The image was first being dark pixel atmospheric corrected by making 30 polygons. The originality of this method was to build a correlation between the dark pixel value of red and green channels with the depth of the field measurement results, made on June 3 to 9, 2015. The algorithm derived experimentally consisted of: thresholding which served to separate the land by the sea and the correlation function. The correlation function was obtained: first correlating the observation value with each band, then calculating the difference of minimum pixel darkness value and minimum for red and green channel was 0.056 and 0.0692. The model was then constructed by using the comparison proportions, so that the linear equations were obtained in two channels: Z (X1, X2) = 406.26 X1 + 327.21 X2 - 28.48. Depth estimation results were for a 5-meter scale, the most efficient estimation with the smallest error relative mean occurred in shallow water depth from 20 to 25 meters, while the result of 10 meters scale from 20 to 30 meters and the estimated depth had similar patterns or could be said close to reality. This method was able to detect sea depths up to 25 meters and had a small RMS error of 0.653246 meters. Thus the two-channel method could offer a fast, flexible, efficient, and economical solution to map topography of the ocean floor.
ANALISIS PERUBAHAN GARIS PANTAI UJUNG PANGKAH DENGAN MENGGUNAKAN METODE EDGE DETECTION DAN NORMALIZED DIFFERENCE WATER INDEX Nanin Anggraini; Sartono Marpaung; Maryani Hartuti
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2545

Abstract

Besides to the effects from tidal, coastline position changed due to abrasion and accretion. Therefore, it is necessary to detect the position of coastline, one of them by utilizing Landsat data by using edge detection and NDWI filter. Edge detection is a mathematical method that aims to identify a point on a digital image based on the brightness level. Edge detection is used because it is very good to present the appearance of a very varied object on the image so it can be distinguished easily. NDWI is able to separate land and water clearly, making it easier for coastline analysis. This study aimed to detect coastline changes in Ujung Pangkah of Gresik Regency caused by accretion and abrasion using edge detection and NDWI filters on temporal Landsat data (2000 and 2015). The data used in this research was Landsat 7 in 2000 and Landsat 8 in 2015. The results showed that the coastline of Ujung Pangkah Gresik underwent many changes due to accretion and abrasion. The accretion area reached 11,35 km² and abrasion 5,19 km² within 15 year period.
ANALISIS SPASIAL KESESUAIAN BUDIDAYA KERAPU BERBASIS DATA PENGINDERAAN JAUH (STUDI KASUS: PULAU AMBON MALUKU) Nanin Anggraini; Syifa Wismayati Adawiah; Devica Natalia Br Ginting; Sartono Marpaung
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 16 No. 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/inderaja.v16i2.3358

Abstract

Indonesian waters have abundant marine aquaculture potential. This activity need to be maximized with remote sensing technology approach to determining locations that have the potential aquaculture areas. The research location is Ambon Island, Maluku Province. The method used for suitability site is Weighted Overlay Technique from biophysical parameters such as total suspended solids (TSS), sea surface temperature (SST), chlorophyll, and bathymetry. In addition, mangrove and coral reef data are used as a limiting factor for the suitability site. Based on the results of processing data, classes were quite suitable dominated in Piru Bay, Banguala Bay, and Ambon Bay; the appropriate classes were detected in Ambon Dalam Bay, and very suitable classes were detected in Piru Bay and Ambon Bay. The results of field measurement verification showed that the temperature of the image data with the insitu data correlated with the value of R2 0.74 and TSS image with insitu data shown R2 of 0.63.