Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sistem Rekomendasi Warna Kontekstual untuk Desain UI/UX Menggunakan Random Forest Agita Nurfadillah; Andarsyah, Roni; Awangga, Rolly Maulana
Jurnal Teknologi dan Manajemen Industri Terapan Vol. 4 No. 3 (2025): Jurnal Teknologi dan Manajemen Industri Terapan (in press)
Publisher : Yayasan Inovasi Kemajuan Intelektual

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55826/jtmit.v4i3.1023

Abstract

Pemilihan warna dalam desain antarmuka pengguna (UI/UX) memegang peranan penting dalam menciptakan pengalaman visual yang konsisten dan menarik. Namun, proses pemilihan warna masih sering didasarkan pada intuisi subjektif. Penelitian ini mengembangkan sistem rekomendasi warna kontekstual berdasarkan kategori aplikasi, menggunakan algoritma Random Forest. Dataset diperoleh dari Dribbble dan Kaggle, mencakup fitur warna RGB, HSL, serta fitur turunan lainnya. Proses pengembangan sistem mengikuti tahapan ADDIE, dimulai dari analisis hingga evaluasi performa. Eksperimen dilakukan dengan tahapan rekayasa fitur, pemilihan fitur, tuning parameter (GridSearchCV), serta penyeimbangan data menggunakan SMOTE. Model terbaik menghasilkan akurasi sebesar 39,2% dan menunjukkan peningkatan pada kategori aplikasi edukatif setelah balancing. Sistem ini diimplementasikan dalam bentuk dashboard interaktif berbasis Streamlit, memungkinkan pengguna memilih kategori aplikasi dan memperoleh rekomendasi warna secara visual. Penelitian ini merupakan kontribusi awal dalam integrasi klasifikasi warna berbasis konteks ke dalam proses desain UI digital, sebagai solusi berbasis data yang dapat mengurangi ketergantungan pada intuisi subjektif.
Sistem Rekomendasi Warna Kontekstual untuk Desain UI/UX Menggunakan Random Forest Agita Nurfadillah; Andarsyah, Roni; Awangga, Rolly Maulana
Jurnal Teknologi dan Manajemen Industri Terapan Vol. 4 No. 3 (2025): Jurnal Teknologi dan Manajemen Industri Terapan
Publisher : Yayasan Inovasi Kemajuan Intelektual

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55826/jtmit.v4i3.1023

Abstract

Pemilihan warna dalam desain antarmuka pengguna (UI/UX) memegang peranan penting dalam menciptakan pengalaman visual yang konsisten dan menarik. Namun, proses pemilihan warna masih sering didasarkan pada intuisi subjektif. Penelitian ini mengembangkan sistem rekomendasi warna kontekstual berdasarkan kategori aplikasi, menggunakan algoritma Random Forest. Dataset diperoleh dari Dribbble dan Kaggle, mencakup fitur warna RGB, HSL, serta fitur turunan lainnya. Proses pengembangan sistem mengikuti tahapan ADDIE, dimulai dari analisis hingga evaluasi performa. Eksperimen dilakukan dengan tahapan rekayasa fitur, pemilihan fitur, tuning parameter (GridSearchCV), serta penyeimbangan data menggunakan SMOTE. Model terbaik menghasilkan akurasi sebesar 39,2% dan menunjukkan peningkatan pada kategori aplikasi edukatif setelah balancing. Sistem ini diimplementasikan dalam bentuk dashboard interaktif berbasis Streamlit, memungkinkan pengguna memilih kategori aplikasi dan memperoleh rekomendasi warna secara visual. Penelitian ini merupakan kontribusi awal dalam integrasi klasifikasi warna berbasis konteks ke dalam proses desain UI digital, sebagai solusi berbasis data yang dapat mengurangi ketergantungan pada intuisi subjektif.