Claim Missing Document
Check
Articles

Found 2 Documents
Search

OPTIMASI RANGKING DOKUMEN DENGAN MODIFIKASI TF-IDF BERBASIS WAKTU PUBLIKASI DAN COSINE SIMILARITY Kamilah, Nyimas Nisrinaa; Aurelia, Reni; Irsyad, Hafiz; Rahman, Abdul
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 3 No 2 (2025): Juni
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32503/jiscomp.v3i2.7172

Abstract

Information Retrieval (IR) tradisional belum mempertimbangkan waktu publikasi dalam menentukan relevansi dokumen. Penelitian ini bertujuan untuk meningkatkan relevansi hasil pencarian dengan memodifikasi metode TF-IDF berbasis waktu publikasi. Metode ini menggabungkan bobot TF-IDF dengan Cosine Similarity untuk mengukur kesamaan antara kueri dan dokumen. Dalam penelitian ini, dataset dievaluasi menggunakan metode yang diusulkan, dengan pengukuran melalui metrix precision, recall, dan F1-score. Hasil pengujian menunjukkan bahwa pendekatan ini mencapai precision 0.87, recall 1.00, dan F1-Score 0.93. Berdasarkan hasil evaluasi, penambahan aspek temporal pada metode ini terbukti mampu meningkatkan akurasi IR dalam konteks pencarian informasi terkini
Hybrid Random Forest Regression and Ant Colony Optimization for Delivery Route Optimization Aurelia, Reni; Rahman, Abdul
Journal of Information System and Informatics Vol 7 No 4 (2025): December
Publisher : Asosiasi Doktor Sistem Informasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63158/journalisi.v7i4.1376

Abstract

The transportation of goods in Indonesian cities is increasingly challenged by urbanization, congestion, diverse road characteristics, and environmental factors, reducing the effectiveness of conventional distance-based routing. This study enhances delivery route optimization by integrating travel-time prediction using Random Forest Regression (RFR) with a metaheuristic routing process using Ant Colony Optimization (ACO). Using OpenStreetMap (OSM) data for Palembang, experiments were conducted on five simulated customer locations in Zone 1. Road attributes such as segment length, road type, and estimated speed were used to train the RFR model, whose predicted travel times served as dynamic costs in the ACO heuristic. The RFR model achieved high predictive accuracy (R² = 0.98; MSE = 8.81), and the ACO-based optimization produced an efficient route of 29.58 km with a total travel time of 148 minutes. However, the experiment is limited to a single zone, a small number of customers, and the removal of real traffic variables—where all actual speed variations, congestion levels, and time-dependent traffic conditions were simplified or omitted, causing the model to rely solely on static road attributes. Future work will incorporate real-time traffic data, expand testing to multiple zones, and use larger datasets to improve scalability and operational applicability.