Claim Missing Document
Check
Articles

Found 2 Documents
Search

Statistical Feature Extraction Based on Wavelet Transform for Arrhythmia Detection Muwakhid, Indra Abdam; Indra Abdam Muwakhid
Jurnal Transformatika Vol. 23 No. 1 (2025): July 2025
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v23i1.12339

Abstract

Early detection of arrhythmia through electrocardiogram (ECG) signals is crucial for preventing severe cardiac conditions. This study proposes a binary classification approach using statistical features derived from wavelet-transformed ECG signals. The MIT-BIH Arrhythmia Database was used, with signals filtered using a 0.5–50 Hz Butterworth bandpass filter. Signals were segmented into 360-sample windows with 100-sample overlap and labeled based on the majority annotation within each window. Wavelet transformation using Symlet 8 at level 4 was applied, followed by the extraction of eight statistical features: mean, standard deviation, variance, skewness, kurtosis, interquartile range (IQR), root mean square (RMS), and zero crossing rate (ZCR). These features were classified using MLP, KNN, and SVM models. MLP and KNN achieved the highest accuracy of 92.46%, while SVM had lower accuracy (72.99%) but high recall (94.21%). The results demonstrate the effectiveness of wavelet-based statistical features for lightweight and accurate arrhythmia detection.
Peningkatan Literasi Digital Keluarga terhadap Link Scam dan Pemanfaatan AI di Wilayah RW 03 Kalipancur Muwakhid, Indra Abdam; Indra Abdam Muwakhid; Okti Tri Hastuti; Dewi Nurdiyah
Jurnal DIMASTIK Vol. 3 No. 2 (2025): Juli
Publisher : Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/dimastik.v3i2.12375

Abstract

Berbagai manfaat telah dirasakan oleh Masyarakat dengan adanya perkembangan teknologi digital, namun juga menimbulkan resiko keamanan seperti penipuan daring (link scam) dan penyalahgunaan kecerdasan buatan (AI). Kurangnya literasi digital di lingkungan keluarga berpotensi membawa kerugian finansial, kebocoran data, hingga penyalahgunaan teknologi. Kegiatan pengabdian Masyarakat ini bertujuan untuk meningkatkan pemahaman warga RW 03 Kelurahan Kalipancur Kota Semarang terhadap ancaman link scam serta memanfaatkan AI dengan aman. Metode yang digunakan meliputi ceramah interaktif, diskusi, simulasi, pre-test, dan post-test. Hasil pemahaman warga menunjukkan peningkatan dari rata-rata pre-test 43% menjadi 84% pada saat post-test. Kegiatan ini efektif dalam meningkatkan literasi digital warga untuk mengantisipasi awal dugaan adanya scam.