Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pendampingan Pengelolaan Website Kelurahan : Kunci Membuka Potensi Kelurahan dan Reformasi Pelayanan kepada Masyarakat Hidayatullah, Muhammad; Hijrah, Muh.; Rahayu, Putri Indi; Presda, Ignasius; B, Ihsan; Apriana, Apriana; Nuraviat, Sitti; Kartini, Kartini
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 6 No. 1 (2025): Jurnal Pengabdian kepada Masyarakat Nusantara Edisi Januari - Maret
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55338/jpkmn.v6i1.5172

Abstract

Perkembangan teknologi informasi telah mendorong transformasi digital di berbagai sektor, termasuk di pemerintahan lokal seperti kelurahan. Namun, banyak kelurahan di Indonesia, termasuk Kelurahan Lembang, Kabupaten Majene, belum memanfaatkan teknologi digital secara optimal untuk meningkatkan pelayanan kepada masyarakat. Pengabdian ini bertujuan untuk mendampingi pengelolaan website Kelurahan Lembang sebagai upaya untuk membuka potensi kelurahan dan mereformasi pelayanan publik. Metode pelaksanaan kegiatan terdiri atas tiga tahap: (1) persiapan, meliputi survei kebutuhan dan pengembangan website kelurahan; (2) implementasi, berupa pelatihan dan pendampingan pengelolaan website kepada aparatur kelurahan; serta (3) evaluasi, dengan menggunakan kuesioner kepuasan peserta untuk menilai efektivitas kegiatan. Hasil kegiatan menunjukkan bahwa pengelolaan website kelurahan mampu meningkatkan efisiensi pelayanan, transparansi, dan akses informasi bagi masyarakat. Selain itu, website ini menjadi media promosi potensi sumber daya alam dan budaya yang dimiliki oleh Kelurahan Lembang.
ENSEMBLE RESAMPLING SUPPORT VECTOR MACHINE, MULTINOMIAL REGRESSION TO MULTICLASS IMBALANCED DATA Qadrini, Laila; Hikmah, Hikmah; Tande, Elviani; Presda, Ignasius; Maghfirah, Aulia Atika; Nilawati, Nilawati; Handayani, Handayani
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 1 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss1pp0269-0280

Abstract

Imbalanced data is a commonly encountered issue in classification analysis. This issue gives rise to prediction errors in the classification process, which in turn affects the sensitivity, particularly in the minority class. Resampling techniques can be employed as a means to mitigate the issue of Imbalanced data. Furthermore, ensemble approaches are Utilized in the classification procedure to augment the performance of classification. The present study assesses the efficacy of the bagging ensemble approach in conjunction with ADASYN as a means of addressing the aforementioned issue. The dataset Utilized in this work comprises Imbalanced Glass Identification data, Imbalanced Iris data, and Imbalanced synthetic data. The study Centres on the Utilization of Support Vector Machines (SVM) with parameter optimization using repeated cross-validation (k = 10) and the application of multinomial regression. The evaluation of classification outcomes involves a comparison between the ensemble technique and multinomial regression. This comparison is conducted under pre- and post-resampling conditions, with the evaluation metrics being accuracy, sensitivity, and specificity. The analysis of classification outcomes across the three datasets suggests that the ensemble resampling SVM approach and multinomial regression exhibit superior performance compared to the ensemble SVM and multinomial regression approaches when applied to non-resampled data. Resampling of data has been observed to enhance sensitivity, particularly in the minority class.