This Author published in this journals
All Journal Jurnal E-Komtek
Chaerudin, Muhammad Farhan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Evaluation of the Accuracy of the Naive Bayes Method in the Classification of Key Performance Indicators (KPIs) for Employees: Systematic Literature Review Chaerudin, Muhammad Farhan; Herman Bedi Agtriadi; Luqman
Jurnal E-Komtek (Elektro-Komputer-Teknik) Vol 9 No 1 (2025)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/e-komtek.v9i1.2323

Abstract

This study aims to evaluate the accuracy of Naive Bayes' method in classifying employee Key Performance Indicators (KPIs) through the Systematic Literature Review (SLR) approach. By collecting and analyzing reputable journals published between 2019 and 2024, this study examines the effectiveness of Naive Bayes in evaluating employee performance. The results of the study show that Naive Bayes is able to achieve a fairly high accuracy, which is between 84% to 90%, in classifying employee KPIs. However, this accuracy can vary depending on the complexity of the data used. Some research suggests that other methods such as Support Vector Machine (SVM) or Decision Tree may be superior in certain situations, especially when the data used is more complex or non-linear. In general, Naive Bayes remains a popular choice due to its ease of implementation and speed in delivering results. This study concludes that the selection of classification methods should be adjusted to the characteristics of the data and the purpose of the analysis to ensure optimal results.