Claim Missing Document
Check
Articles

Found 2 Documents
Search

Regional Prioritization for Free Nutritious Food Programs through Social Data Integration and Public Sentiment Analysis Using K-Means and NLP Sanusi, Ratna Nur Mustika; Wijaya, Galih Kusuma; Harwanti, Nur Achmey Selgi
Unnes Journal of Mathematics Vol. 14 No. 1 (2025): Unnes Journal of Mathematics Volume 1, 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v13i2.25750

Abstract

This study evaluates Indonesia's Free Nutritious Food Program (MBG) through an innovative dual-method approach combining geospatial clustering and sentiment analysis. Cluster analysis of 38 provinces identified three distinct priority zones: high-priority (Eastern Indonesia), medium-priority (Central Indonesia), and low-priority (Java-Bali-West Sumatra), revealing significant regional disparities. Parallel sentiment analysis of 1,358 social media posts showed 76.6% negative perceptions dominated by food safety concerns ("poisoning," "toxic"), contrasting with 23.4% positive feedback highlighting nutritional benefits. The study makes three key contributions: First, it demonstrates the disconnect between regional needs and implementation quality. Second, it introduces an integrated monitoring framework combining cluster mapping with real-time sentiment tracking. Third, it proposes actionable solutions including a rapid-response task force and targeted communication strategies. These findings provide policymakers with evidence-based tools to simultaneously address geographical inequities and improve program execution in nutrition interventions.
COMPARATIVE STUDY OF LSTM-BASED MODELS WITH HYPERPARAMETER OPTIMIZATION FOR SHORT-TERM ELECTRICITY LOAD FORECASTING Kharisudin, Iqbal; Arissinta, Insyiraah Oxaichiko; Aulia, Sabrina Aziz; Dani, Muhamad Abdul Qodir; Wijaya, Galih Kusuma
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0105-0122

Abstract

This research is focused on the development and comparison of time series models for short-term electrical load forecasting, utilizing several variants of Long Short-Term Memory (LSTM) networks. The specific LSTM variants employed in this study include Vanilla LSTM, Stacked LSTM, Bidirectional LSTM, and Convolutional Neural Network LSTM (CNN-LSTM). We used five years (2016-2020) of daily electricity load data from the Central Java-DIY system, provided by PT PLN (Persero). The primary objective is to ascertain the accuracy and evaluate the performance of these LSTM variants in the context of short-term load forecasting. This is achieved quantitatively through the computation of various error metrics, namely Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared. The results of the study reveal that the CNN-LSTM method outperforms the other variants in terms of the calculated metrics. Specifically, the CNN-LSTM method achieved the lowest values for all metrics: an MSE of 0.007 for training and 0.0010 for testing, an MAE of 0.0050 for training and 0.0062 for testing, and an RMSE of 0.083 for training and 0.099 for testing. Among the evaluated models, CNN-LSTM demonstrates the best trade-off between predictive accuracy and training efficiency, making it the most recommended for short-term electricity load forecasting. While BiLSTM achieves higher accuracy, particularly in terms of MAE, it requires a longer training time. In contrast, Stacked LSTM converges faster with slightly lower accuracy, making it a strong alternative when computational efficiency is prioritized..