Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Subtipe Leukemia Limfoblastik Akut (LLA) pada Citra Mikroskopis Sel Darah Menggunakan Arsitektur EfficientNet-B3 dengan Dataset Seimbang Agustina, Ni Putu Dina; Wijayakusuma, I Gusti Ngurah Lanang
Jurnal Locus Penelitian dan Pengabdian Vol. 4 No. 6 (2025): JURNAL LOCUS: Penelitian & Pengabdian
Publisher : Riviera Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58344/locus.v4i6.4321

Abstract

Acute Lymphoblastic Leukemia (ALL) is one of the most common types of blood cancer that affects children and requires fast and accurate diagnosis. This study proposes a classification model for subtypes of acute lymphoblastic leukemia (ALL) based on microscopic blood cell images using the EfficientNet-B3 architecture. With a transfer learning approach and a balanced dataset, the model achieves a testing accuracy of 97.50% and an average F1-Score of 0.97. Overall, the macro average and weighted average values show consistent results, with precision and recall of 0.98 and an F1-Score of 0.97. This indicates that the model excels not only in one or two classes but demonstrates uniform performance across all classes, making it a robust classification tool for automatic leukemia diagnosis applications.