Claim Missing Document
Check
Articles

Found 1 Documents
Search

Yoga Posture Recognition and Classification Using YOLOv5 Maqbullah, Afwatul; Handayani, Anik Nur; Kurniawan, Wendy Cahya
Indonesian Journal of Data and Science Vol. 6 No. 2 (2025): Indonesian Journal of Data and Science
Publisher : yocto brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijodas.v6i2.228

Abstract

Yoga, a centuries-old health practice from India, has gained global recognition for its benefits to physical, mental, and emotional well-being. However, incorrect execution of yoga poses can lead to injuries or diminished results. This research develops an automated system for recognizing and classifying yoga postures using YOLOv5, a state-of-the-art deep learning algorithm. YOLOv5, part of the YOLO (You Only Look Once) series, is designed for real-time object detection and offers enhanced performance through features like anchor-free detection and adaptive training strategies. The study collects a dataset of 1,000 images across 20 yoga pose categories, followed by manual annotation and training using transfer learning. Validation results show strong performance, achieving an accuracy of 90% with precision and recall scores of 0.942 and 0.941, respectively, and mAP@50 and mAP@50-95 values of 0.976 and 0.866. Despite challenges with certain poses showing lower accuracy due to variations in posture and dataset limitations, the model demonstrates robustness in detecting and classifying yoga postures effectively. This system has potential applications in artificial intelligence-driven yoga education, enabling practitioners to train independently with real-time feedback