Purnama, Satriawan Rasyid
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An Efficient Bidirectional Gated Recurrent Unit Approach for Student Study Duration Modeling and Timely Graduation Forecasting Purnama, Satriawan Rasyid; Tantyoko, Henri; Vianita, Etna
Jurnal Masyarakat Informatika Vol 16, No 2 (2025): Issue in Progress
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.2.73275

Abstract

Delays in student graduation remain a persistent challenge in higher education, with approximately 28% of students requiring more than four years to complete their studies, exceeding the standard duration. This study addresses the issue by proposing a predictive model to estimate students’ graduation year using a Bidirectional Gated Recurrent Unit (BiGRU) neural network. The model is trained on a combination of academic and financial indicators, including Grade Point (GP) scores from the first to the fifth semester, cumulative Grade Point Average (GPA), and the single tuition fee tier (UKT). The integration of these features allows the model to learn temporal patterns in students’ academic progression and financial capacity. Empirical analysis reveals that students in the UKT 8 group consistently demonstrate superior academic performance, as evidenced by their higher average GPA across semesters, compared to students in lower UKT groups. The BiGRU model achieves a Mean Absolute Percentage Error (MAPE) of 9.5%, indicating high predictive accuracy. These findings highlight the potential of deep learning models, particularly BiGRU, in forecasting academic outcomes. Furthermore, the insights generated from this model can serve as a valuable tool for universities in formulating targeted academic interventions and policies aimed at promoting timely graduation and reducing dropout rates.