Lavanya, Pillalamarri
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Leveraging IoT with LoRa and AI for predictive healthcare analytics Lavanya, Pillalamarri; Venkatachalam, Selvakumar; Subba Reddy, Immareddy Venkata
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 3: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i3.pp1156-1162

Abstract

Progress in mobile technology, the internet, cloud computing, digital platforms, and social media has substantially facilitated interpersonal connections following the COVID-19 pandemic. As individuals increasingly prioritise health, there is an escalating desire for novel methods to assess health and well-being. This study presents an internet of things (IoT)-based system for remote monitoring utilizing a long range (LoRa), a low-cost and LoRa wireless network for the early identification of health issues in home healthcare environments. The project has three primary components: transmitter, receiver, and alarm systems. The transmission segment captures data via sensors and transmits it to the reception segment, which then uploads it to the cloud. Additionally, machine learning (ML) methods, including convolutional neural networks (CNN), artificial neural networks (ANN), Naïve Bayes (NB), and long short-term memory (LSTM), were utilized on the acquired data to forecast heart rate, blood oxygen levels, body temperature patterns. The forecasting models are trained and evaluated using data from various health parameters from five diverse persons to ascertain the architecture that exhibits optimal performance in modeling and predicting dynamics of different medical parameters. The models' accuracy was assessed using mean absolute error (MAE) and root mean square error (RMSE) measures. Although the models performed similarly, the ANN model outperformed them in all conditions.