Badrinath, Goteti
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A survey on ransomware detection using AI models Badrinath, Goteti; Gupta, Arpita
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 3: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i3.pp1085-1094

Abstract

Data centers and cloud environments are compromised as they are at great risk from ransomware attacks, which attack data integrity and security. Through this survey, we explore how AI, especially machine learning and deep learning (DL), is being used to improve ransomware detection capabilities. It classifies ransomware types, highlights active groups such as Akira, and evaluates new DL techniques effective at real-time data analysis and encryption handling. Feature extraction, selection methods, and essential parameters for effective detection, including accuracy, precision, recall, F1-score and receiver operating characteristic (ROC) curve, are identified. The findings point to the state of the art and the state of the art in AI based ransomware detection and underscore the need for robust, real-time models and collaborative research. The statistical and graphical analyses help researchers and practitioners understand existing trends and directions for future development of efficient ransomware detection systems to strengthen cybersecurity in data centers and cloud infrastructures.