Pratiwi Tentriajaya, I Dewa Ayu Pradnya
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Eye Disease Classification Using EfficientNet-B0 Based on Transfer Learning Pratiwi Tentriajaya, I Dewa Ayu Pradnya; Wijayakusuma, I Gusti Ngurah Lanang
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9743

Abstract

This study focuses on developing and evaluating a deep learning approach employing EfficientNet-B0 based on transfer learning to classify retinal fundus images into four categories: Cataract, Diabetic Retinopathy, Glaucoma, and Normal. The model was trained using a retinal image dataset and demonstrated stable training performance, indicated by a consistent decrease in both training and validation loss without signs of overfitting. The training accuracy reached 92%, while the validation accuracy ranged between 94–95%. Model performance evaluation using a confusion matrix and classification report showed excellent classification results, particularly for the Diabetic Retinopathy class, with an F1-Score of 0.98. The Cataract and Normal classes also achieved high performance, with F1-Scores of 0.94 and 0.92, respectively. However, classification accuracy slightly declined for the Glaucoma class, which experienced some misclassification with the Normal class. Overall, the model achieved a classification accuracy of 94% on the test dataset, indicating good generalization capability. These findings suggest that the model holds strong potential for implementation in automated medical image-based diagnostic support systems. Nonetheless, performance improvement in classes with relatively higher misclassification rates is still required to ensure model reliability in clinical practice.