Lungido, Joshua
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Real-Time Drug Classification Using YOLOv11 for Reducing Medication Errors Lungido, Joshua; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.10117

Abstract

Advancements in digital imaging and machine learning have transformed healthcare, enabling innovative solutions for automated drug identification. This study develops an image-based system to classify pharmaceutical drugs, tackling errors arising from visual similarities in their shape, color, or size. Accurate drug identification is crucial for healthcare professionals and patients to access reliable information on drug composition, usage instructions, and potential side effects, enhancing safety and efficiency in medical practice. The system leverages the YOLO (You Only Look Once) algorithm, renowned for its speed and precision in object detection. A dataset comprising 5,000 drug images sourced from Kaggle was curated, with annotations and augmentation techniques such as horizontal flipping, rotation, and scaling to improve model robustness. The YOLOv11 model achieved a precision of 97.4%, a recall of 97.6%, and a mean average precision (mAP@50) of 98.4%, demonstrating high reliability in real-world scenarios. Integrated with a user-friendly Tkinter interface, the system facilitates real-time drug detection and information retrieval, streamlining access to critical data. This research underscores the YOLO algorithm’s effectiveness in delivering rapid and accurate drug classification, offering a scalable solution for healthcare applications. The system’s success highlights its potential to reduce medication errors and improve patient outcomes through precise and accessible drug identification technology.