This Author published in this journals
All Journal Jurnal INFOTEL
Alfariz, Muhammad Fauzan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Autism Face Detection System using Single Shot Detector and ResNet50 Melinda, Melinda; Alfariz, Muhammad Fauzan; Yunidar, Yunidar; Ghimri, Agung Hilm; Oktiana, Maulisa; Miftahujjannah, Rizka; Basir, Nurlida; Acula, Donata D.
JURNAL INFOTEL Vol 17 No 2 (2025): May
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v17i2.1331

Abstract

The facial features of children can provide important visual cues for the early detection of autism spectrum disorder (ASD). This research focuses on developing an image-based detection system to identify children with ASD. The main problem addressed is the lack of practical methods to assist healthcare professionals in the early identification of ASD through facial visual characteristics. This study aims to design a prototype facial image acquisition and detection system for children with ASD using Raspberry Pi and a deep learning-based single shot detector (SSD) algorithm. In this method, the face detection model uses a modified ResNet50 architecture, which can be used for advanced analysis for classification between autistic and normal children, achieving 95% recognition accuracy on a dataset consisting of facial images of children with and without ASD. The system is able to recognize the visual characteristics of the faces of children with ASD and consistently distinguish them from those of normal children. Real-time testing shows a detection accuracy ranging from 86% to 90%, with an average accuracy of 90%, despite fluctuations caused by variations in movement and viewing angle. These results show that the developed system offers high accuracy and has the potential to function as a reliable diagnostic tool for the early detection of ASD, which ultimately facilitates timely intervention by healthcare professionals to support the optimal development of children with ASD.