Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improving the Classification Performance of SVM, KNN, and Random Forest for Detecting Stress Conditions in Autistic Children Melinda, Melinda; Yunidar, Yunidar; Miftahujjannah, Rizka; Rusdiana, Siti; Amalia, Amalia; Qadri Zakaria, Lailatul
International Journal of Engineering, Science and Information Technology Vol 5, No 4 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i4.1206

Abstract

This paper addresses the critical challenges of managing stress in autistic children by introducing an innovative deployable system designed to detect signs of stress through continuous monitoring of physiological and environmental indicators. The system, implemented as a convenient portable detection system, measures key parameters such as heart rate, body temperature and skin conductance. The data is accessed in real-time and displayed on the Blynk application with an IoT system and viewed remotely via an Android device, allowing caregivers to receive instant notifications upon detection of potential stress symptoms. This timely alert system enables rapid intervention, potentially reducing stress intensity and providing peace of mind to caregivers. The study further compares three powerful data analysis methods namely Support Vector Machine (SVM), K-nearest neighbors (KNN) and Random Forest (RF) in interpreting the collected sensor data. The SVM-based system achieved a fairly good detection accuracy of 90%, KNN also showed excellent results of 92% while the Random Forest-based system showed superior performance with an impressive accuracy of 95%. These findings suggest that the Random Forest method exhibits a superior level of effectiveness in accurately predicting the onset of stress conditions., providing the importance for technological advancements that can be applied in supporting better management of autism-related behavioral defenses.
H20 and H20 with NaOH-Based Multispectral Classification Using Image Segmentation and Ensemble Learning EfficientNetV2, Resnet50, MobileNetV3 Melinda, Melinda; Yunidar, Yunidar; Zulhelmi, Zulhelmi; Suyanda, Arya; Qadri Zakaria, Lailatul; Wong, W.K
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 4 (2025): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i4.1016

Abstract

High Multispectral imaging has become a promising approach in liquid classification, particularly in distinguishing visually similar but subtly spectrally distinct solutions, such as pure water (H₂O) and water mixed with sodium hydroxide (H₂O with NaOH). This study proposed a classification system based on image segmentation and deep learning, utilizing three leading Convolutional Neural Network (CNN) architectures: ResNet 50, EfficientNetV2, and MobileNetV3. Before classification, each multispectral image was processed through color segmentation in HSV space to highlight the dominant spectral, especially in the hue range of 110 170. The model was trained using a data augmentation scheme and optimized with the Adam algorithm, a batch size of 32, and a sigmoid activation function. The dataset consists of 807 images, including 295 H₂O images and 512 H₂O with NaOH images, which were divided into training (64%), validation (16%), and testing (20%) data. Experimental results show that ResNet50 achieves the highest performance, with an accuracy of 93.83% and an F1 score of 93.67%, particularly in identifying alkaline pollution. EfficientNetV2 achieved the lowest loss (0.2001) and exhibited balanced performance across classes, while MobileNetV3, despite being a lightweight model, remained competitive with a recall of 0.97 in the H₂O with NaOH class. Further evaluation with Grad CAM reveals that all models focus on the most critical spectral areas of the segmentation results. These findings support the effectiveness of combining color-based segmentation and CNN in the spectral classification of liquids. This research is expected to serve as a stepping stone in the development of an efficient and accurate automatic liquid classification system for both laboratory and industrial applications.