Claim Missing Document
Check
Articles

Found 2 Documents
Search

Neuromorphic Hardware Design for Energy-Aware Artificial Intelligence Computation Aljanabi, Yaser Issam Hamodi; Hussain, Salah Yehia; Salim, Darin Shafiq; Al-Doori, Vian S.; Brieg, Jassim Mohamed; Batumalay, M.
International Journal of Engineering, Science and Information Technology Vol 5, No 1 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i1.1279

Abstract

Rapid growth of the energy-efficient artificial intelligence (AI) systems has attracted substantial interest in neuromorphic computing that emulates organization and actions of a biological neural?system to support low-power, event-driven information processing. In this work, we propose a neuromorphic hardware architecture for energy-efficient AI computing that utilizes spiking neural networks and monolithic?vertical integration to improve the performance of a variety of vision tasks. The architecture is tested against three benchmark datasets— MNIST, N-MNIST, and DVS128,?representing static, spiking and dynamic input modalities, respectively. The performance metrics, such as energy efficiency, inference latency,?throughput, classification accuracy, and unified Energy Efficiency Index (EEI) are compared to characterize the generalization power of the system in different processing environments. Experimental results show that the proposed chip provides a sharply lower energy per inference with a competitively performing accuracy over conventional AI?accelerators, including GPU-based and microcontroller platforms. Additionally, the hardware achieves sub-2 ms inference latency and high throughput, indicating suitability for real-time, embedded AI applications. Comparative analysis with existing neuromorphic platforms highlights the advantage of architectural co-design in balancing energy and performance constraints. While the absence of on-chip learning presents a limitation, the system offers a scalable foundation for edge AI systems requiring efficient, continuous inference. Future directions include integrating adaptive learning mechanisms and extending evaluation to broader AI domains as a process innovation.
Data-Driven Cloud Systems for Renewable Energy Optimization Yousif, Hayder Abdulameer; Hussain, Salah Yehia; Hassan Ali, Taif Sami; Al-Doori, Vian S.; Sabah, Ahmed; Batumalay, M.
International Journal of Engineering, Science and Information Technology Vol 5, No 2 (2025)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v5i2.1729

Abstract

The growing share of renewable generation in global power systems creates operational instability due to the volatile nature of solar, wind, and hydropower. This study presents a novel cloud-edge integrated model designed to enhance the performance and efficiency of these renewable sources through a data-centric approach. The proposed architecture relies on an IoT-enabled sensor network for real-time data gathering, processed through a hybrid infrastructure combining edge-level filtration with cloud-based analytics. For energy output prediction, we compared Linear Regression, Random Forest, and Long Short-Term Memory (LSTM) models, with LSTM demonstrating superior performance. To optimize operations, a multi-objective Genetic Algorithm was implemented to simultaneously minimize energy losses and costs while improving grid utilization balance. Furthermore, exergy-based modeling was employed to evaluate the thermodynamic quality of energy transformations. The results confirmed that the system significantly improved predictive accuracy, responsiveness, and energy savings. Under varying loads, the system maintained low latency and high energy allocation efficiency, validating its real-time adaptability. In summary, this research delivers a modular and scalable solution for intelligent energy management, highlighting the power of predictive analytics and adaptive control in creating data-driven, next-generation sustainable energy efficiency systems.