Claim Missing Document
Check
Articles

Found 2 Documents
Search

Comparative of prediction algorithms for energy consumption by electric vehicle chargers for demand side management Abida, Ayoub; Majdoul, Redouane; Zegrari, Mourad
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp4192-4201

Abstract

This study focuses on demand side management (DSM), specifically managing electric vehicle (EV) charging consumption. Power distributors must consider numerous factors, such as the number of EVs, charging station availability, time of day, and EV user behavior, to accurately predict EV charging demand. We utilized machine learning algorithms and statistical modeling to predict the energy required by EV users for a specific charger and compared algorithms like K-Nearest Neighbors, XGBoost, random forest regressor, and ridge regressor. To contribute to the existing literature, which lacks studies on future energy prediction for a specific period, we conducted predictions for the next year 2024 on the energy consumption of electric vehicles for an electric vehicle charging point in a Moroccan city. These predictions can be generalized to other chargers as well. Our results showed that K-nearest neighbors (KNN) outperformed other algorithms in accuracy. This study provides valuable insights for distribution operators to manage energy resources efficiently and contributes to the DSM field by highlighting the effectiveness of KNN in predicting EV charging demand.
Evaluating clustering algorithms with integrated electric vehicle chargers for demand-side management Abida, Ayoub; Majdoul, Redouane; Zegrari, Mourad
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5837-5846

Abstract

The integration of electric vehicles (EVs) and their effects on power grids pose several challenges for distribution operators. These challenges are due to uncertain and difficult-to-predict loads. Every electric vehicle charger (EVC) has its specific pattern. This challenge can be addressed by clustering methods to determine EVC energy consumption clusters. Demand side management (DSM) is an effective solution to manage the incoming load of EVs and the large number of EVCs. Considering the challenges of peak consumptions and valleys, the adoption of vehicle-to-grid (V2G) technology requires mastering load clusters to develop energy management systems for distributors. This work used clustering algorithms (K-means, DBSCAN, C-means, BIRCH, Mean-Shift, OPTICS) to identify load curve patterns, and for performance evaluation of algorithms, it worked on metrics like the Silhouette coefficient, Calinski-Harabasz index (CHI), and Davies-Bouldin index (DBI) to evaluate results. C-means achieves the best overall clustering performance, evidenced by the highest Silhouette coefficient (0.30) and a strong Calinski-Harabasz score (543). Mean-Shift excels in the Davies-Bouldin Index (1.13) but underperforms on other metrics. BIRCH provides a balanced approach, delivering moderate results across evaluated metrics.