Romadhon, Nur Rizky
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification of Intraoral Images in Dental Diagnosis Based on GLCM Feature Extraction Using Support Vector Machine Romadhon, Nur Rizky; Sigit, Riyanto; Dewantara, Bima Sena Bayu
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3051

Abstract

This study aims to develop an AI-based diagnostic tool for classifying dental conditions and tooth types to enhance the accuracy and efficiency of dental diagnostics. Manual documentation and diagnosis in dentistry are often prone to errors, inefficiencies, and delays, leading to adverse patient outcomes. Leveraging digital image processing and machine learning, this research addresses these challenges by automating the classification process. Dental imaging data were collected from the Dental and Mouth Hospital (RSGM) of Nala Husada Surabaya, Indonesia, comprising 3,910 images categorized into dental conditions (1,767 images) and tooth types (2,143 images). The dataset was preprocessed through resizing, grayscale conversion, histogram equalization, and median filtering. Texture features were extracted using the Gray Level Co-occurrence Matrix (GLCM), and classification was performed using Support Vector Machine (SVM), K-Nearest Neighbor, Naïve Bayes, Decision Tree, and Random Forest algorithms. The SVM algorithm achieved the highest accuracy of 54.24% for dental conditions and 41.49% for tooth types, outperforming other methods. However, the overall performance was suboptimal, primarily due to dataset limitations, reliance on GLCM for feature extraction, and insufficient preprocessing. The results highlight the potential of AI-based tools in dentistry but also underscore the need for improvements in dataset diversity, advanced feature extraction methods, and hyperparameter optimization. Future research should focus on expanding the dataset, exploring deep learning-based feature extraction, and employing robust evaluation strategies to enhance model performance. This study lays the groundwork for developing a more reliable and efficient AI-based diagnostic tool, ultimately improving patient outcomes and streamlining clinical workflows in dentistry.